• 제목/요약/키워드: fin diameter

검색결과 202건 처리시간 0.02초

마이크로 Pin Fin 화학반응기에서 수소화붕소나트륨 수용액의 압력강하 및 탈수소 화학반응 연구 (Pressure Drop and Catalytic Dehydrogenation of NaBH4 Solution Across Pin Fin Structures in a Microchannel Reactor)

  • 정기문;최석현;이희준
    • 대한기계학회논문집B
    • /
    • 제41권6호
    • /
    • pp.381-387
    • /
    • 2017
  • 수소화붕소나트륨은 안정적으로 수소가 저장된 물질이며, 촉매반응으로 수소를 용이하게 분리할 수 있다. 본 연구에서는 탈수소 반응률을 높이기 위해 비표면적이 큰 마이크로 pin fin 화학반응기를 제작하여 수소화붕소나트륨 수용액의 압력강하 및 탈수소 화학반응 실험을 수행하였다. 나노공정을 이용하여 실리콘웨이퍼에 높이 $300{\mu}m$, 직경 $50{\mu}m$의 pin fin을 축간격 1.3, 횡간격 1.5으로 엇갈림 배열하였다. 수소화붕소나트륨 수용액은 5~20 wt.% 농도로 Re수 1~60으로 공급되었으며, 초고속카메라를 이용하여 탈수소반응 유동양상을 관찰하였다. 실험 결과 마이크로 pin fin 화학반응기는 동일 수력학적직경을 가지는 직관 마이크로채널 화학반응기보다 화학반응 성능이 2.45배 우수한 반면, 압력강하는 1.5배 증가하였다.

CFC11, HCFC123, HCFC141b 풀내에서 낮은 핀관의 비등 열전달특성 (Pool Boiling Heat Transfer Charcteristics of Low-Fin Tubes in CFC11, HCFC123 and HCFC141b)

  • 김주형;곽태희;김종보
    • 대한기계학회논문집
    • /
    • 제19권9호
    • /
    • pp.2316-2327
    • /
    • 1995
  • Experimental results from nucleate pool boiling heat transfer with various finned tubes in CFC11, HCF123 and HCFC141b are reported. One plain tube and four low fin tubes of various fin densities were tested in an attempt to find out the optimum fin density in the heat flux range of 10-60 kW/m$^{[-992]}$ at near atmospheric pressure. The results indicated that CFC11 showed the highest heat transfer coefficients. Its alternatives, HCFC123 and HCFC141b, showed 3-5% lower heat transfer coefficients than those of CFC11 at the same heat flux. As the fin density increases, so does the heat transfer surface area. Measured heat transfer coefficients, however, do not necessarily always increase as the fin density increases. This unique phenomenon seems to be caused by the coalescence of the bubblers that prevent the cool liquid from entering into the fin valleys. For all the refrigerants tested, the optimum fin density yielding the highest performance was 28 fins per inch confirming the previous results by other researchers.

터보 냉동기용 핀튜브에 관한 연구 ( I ) - 응축 열전달에 관하여 - (A Study on Finned Tube Used in Turbo Refrigerator( I ) -for Condensation Hear Transfer-)

  • 조동현;한규일;김시영
    • 수산해양교육연구
    • /
    • 제5권1호
    • /
    • pp.31-44
    • /
    • 1993
  • Through the early 1900's, the evolution of the surface condenser was closely tied to the development of steam engine and the turbine. As the chemical and petroleum industries evolved in the 1900's, the use of surface condensers in many different processes. Today, industry uses condensers in many shapes and sizes. The actual condensation process occurs on the outside surface of tubes. The nature of this surface geometry affects the condenser's heat transfer performance. The first condensers were built with plain tubes. As tube manufacturing techniques advanced, manufacturers started making tubes with integral fins. In the 1940's, fin densities were limited to about 600 to 700 fins per meter(fpm) because of manufacturing procedure. Today new manufacturing techniques allow production of tubes with fin densities ranging from 750 to 1600 fpm. The integral-fin tubes investigated in this paper are nominally 19 mm diameter. Eight tubes have been used with trapezodially shaped integral-fins having fin density from 748 to 1654 fpm and 10, 30 grooves. For comparison, tests are made using a plain tube having the same inside diameter and an outside diameter equal to that at the root of the fins for the finned tubes. Betty and Katz's theoretical modelis is used to predict the R-11 condensation coefficient on horizontal integral-fin tubes having 748, 1024 and 1299 fpm. Experiments are carried out using R-11 as working fluid. The refrigerant condensates at a saturation state of $30^{\circ}C$ on the outside tube surface cooled by coolant. The amount of noncondensable gases present in the test loop is reduced to a negligible value by repeated purging. For a given heat input to the boiler and given cooling water flow rate, all test data are taken at steady state. The observed heat transfer enhancement for the finned and grooved tubes significantly exceeded that to be expected on grounds of increased area. For the eight fin tubes and one plain tube tested, the best performance has been obtained with a tube having a fin density of 1299 fpm, and a fin bight of 1.2mm and 30 grooves.

  • PDF

대구경 타원관을 적용한 건조기용 핀-관 열교환기의 성능특성 (Performance Characteristics of Fin-Tube Heat Exchanger having Large Diameter Oval Tube for Dryer)

  • 배경진;차동안;권오경
    • 설비공학논문집
    • /
    • 제27권1호
    • /
    • pp.8-13
    • /
    • 2015
  • The objective of this paper is to provide design data of fin-tube heat exchanger which have a large diameter oval tube for dryer application. In this study, the heat transfer and pressure drop performance characteristics of the fin-tube heat exchanger were compared with Dittus-Boelter and a new correlation equation using Wilson plot method. The simulation results based on section by section method were compared with experimental results. These results showed that a new correlation equation using Wilson plot method provided better prediction, about 3 to 12%, than the Dittus-Boelter equation, from the experiment comparison. Also, the pressure drop of simulation results showed much more deviation with the experimental results.

다분지 미니 채널 열교환기의 액단상 열전달 특성에 관한 연구 (A study of heat transfer characteristics on the Multi-pass Heat exchanger with Minichannel)

  • 임용빈;이승훈;김정훈;김종수
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.357-362
    • /
    • 2006
  • This research focused on the multi-pass heat exchanger using the minichannel possessing the spring fin. An air-water was used as working fluid. The characteristics of liquid single phase heat transfer were verified. The compact heat exchanger (heat transfer area density : ${\beta}=2,146 m^2/m^3$), based on the shape of header(Top combining header), 63 minichannels ($D_i$ : 1.4 mm, L : 0.25 m) and the air side adopting the copper wire spring fin, was fabricated. The heat transfer area density of the air side was improved up to 161% when compared with the conventional fin-tube heat exchanger that adopts the heat transfer tube with the inner diameter of 5 mm. With regard to heat transfer performance, heat transfer rate per unit volume increased up to 142% when compared with the fin-tube heat exchanger adopting the heat transfer tube with the inner diameter of 5 mm.

  • PDF

낮은 핀관에서 대체냉매의 풀비등 열전달계수 (Pool boiling heat transfer coefficients of alternative refrigerants on low fin tubes)

  • 송길홍;이준강;정동수;김종보
    • 설비공학논문집
    • /
    • 제10권4호
    • /
    • pp.411-422
    • /
    • 1998
  • In this study, experiments were carried out to provide nucleate pool boiling heat transfer data for a plain tube and 4 different low fin tubes employing 2 refrigerant mixtures of R410A, R407C, and 12 pure fluids. Low fin tubes were machined on a 19.05mm nominal outside diameter copper block according to the manufacturer's low fin tube specifications. Cartridge heaters were used to generate uniform heat flux on the tubes. For all refrigerants, heat flux varied from 10㎾/$\m^2$ to 80㎾/$\m^2$. It is found that heat transfer coefficients(HTCs) of high vapor pressure refrigerants are usually higher than those of low pressure fluids. On the other hand, the fin effect was more prominent with low pressure refrigerants than with high pressure ones. Optimum fin density as well as the increase in heat transfer coefficient with the increase in fin density were found to be strongly fluid dependent. HTCs of Rl23, a low pressure alternative refrigerant, were similar to those of Rll while HTCs of R134a, an intermediate pressure alternative refrigerant, were roughly 20% higher than those of Rl2. Finally, HTCs of R32, R125, R143a, and R410A were all higher than those of R22 by 30~50%.

  • PDF

공작기계 절삭유 냉각용 낮은 핀관의 열전달 성능에 관한 연구 (A Study on the Performance of Heat Transfer of Low Fin Tubes Used in Cooling of the Cutting Oil of the Machine Tool)

  • 조동현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1998년도 추계학술대회 논문집
    • /
    • pp.125-133
    • /
    • 1998
  • Nine tubes with trapezoidal integral-fins having fin densities from 748 to 1654fpm and 10,30 grooves and finned tubes with caves of 0.55 and 0.64mm height respectively are tested. A plain tube having same diameter as the finned tubes is also tested for comparison. In case of condensation CFC-11 condensates at saturation state of 32$^{\circ}C$ on the outside surface cooled by inside cooling water flows. And in case of boiling the refrigerant evaporates at a saturation state of 1bar on the outside tube surface and heat is supplied by hot water which circulates inside of the tube. The tube having fin density of 1299fpm and 30grooves has the best condensation overall heat transfer coefficient. However, as far as boiling heat transfer coefficient concerns, fin tubes with cave show higher value than low fin tube having fin density of 1299fpm and 30 grooves.

  • PDF

핀-휜을 삽입한 채널의 길이에 따른 열전달 특성 변화 (Heat Transfer Characteristics depending on the Length of a Channel with Pin-Fin Array)

  • 손영석;신지영;이상록
    • 설비공학논문집
    • /
    • 제19권5호
    • /
    • pp.418-425
    • /
    • 2007
  • The power consumption and heat generation in a chip increase as the components are miniaturized and the computing speed becomes faster. Therefore, suitable heat dissipation has become one of the primary limiting factors to ensure the guaranteed performance and reliable operation of the electronic devices. A pin-fin array which may be considered as a porous medium could be used as an alterative cooling system of the electronic equipment. The aim of the present study is to investigate the forced-convective heat transfer characteristics of pin-fin heat exchangers. Convective heat transfer through the pin~fin array is analyzed experimentally based on porous medium approach. The influence of the structure of the pin-fin array including the pin-fin spacing, the pin diameter and plate length on heat transfer characteristic is investigated and compared with the Previous analytical results and existing correlation equations. Nowadays, electronic and mechanical devices become smaller and smaller. In this sense, the main purpose of this study is to decide the optimum pin-fin arrangement to get similar heat transfer performance when the length of the existing cooling system is reduced as a half.

증발기의 설계조건에서 공기측 열전달계수 및 압력강하 산출 (Evaluation of Air-side Heat Transfer and Friction Characteristics on Design Conditions of Evaporator)

  • 김창덕;이진호
    • 설비공학논문집
    • /
    • 제15권12호
    • /
    • pp.1007-1017
    • /
    • 2003
  • An experimental study on the air-side pressure drop and heat transfer coefficient of slit fin-tube heat exchanger has been carried out. The data reduction methodology for air-side heat transfer coefficients in the literature is not based on a consistent approach. This paper focuses on new method of data reduction to obtain the air-side performance of fin-tube heat exchanger using R22 and recommends standard procedures for dry and wet surface heat transfer estimation in fin-tube heat exchanger having refrigerant on the tube-side. Results are presented as plots of friction f-factor and Colburn j -factor against Reynolds number based on the fin collar outside diameter and compared with previous studies. The data covers a range of refrigerant mass fluxes of 150∼250 kg/$m^2$s with air flows at velocity ranges from 0.3 m/s to 0.8 m/s.

Fin이 부착된 원관내를 통과하는 층류 유동해석 (Analysis of Laminar Flow Through Internally Finned Tube)

  • 정호열;정재택
    • 설비공학논문집
    • /
    • 제14권3호
    • /
    • pp.254-260
    • /
    • 2002
  • There have been many studies for the flow through internally finned tube, since the heat exchangers with fin device derive much attention in heat transfer enhance cent. In this study, analysis of laminar flow through the circular tube with longitudinal fins are investigated. The height and the number of fins are arbitrary. The flow field is assumed to be laminar and conformal mapping is used to obtain analytic solution. From the analytic solution, equi-velocity lines are shown, and the flow rate through the finned tube is calculated for various fin heights and numbers of fins. Darcy friction factor for this finned tube and shear stress distributions on the wall and fin are also considered.