• Title/Summary/Keyword: fin diameter

Search Result 202, Processing Time 0.026 seconds

A Study on Finned Tube Used in Turbo Refrigerator(III) -for Pressure Drop- (터보 냉동기용 핀 튜브에 관한 연구 (III) -압력 손실에 관하여-)

  • Han, Kyu-Il;Kim, Si-Young;Cho, Dong-Hyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.6 no.1
    • /
    • pp.58-76
    • /
    • 1994
  • Heat transfer and pressure drop measurements are made on low integral-fin tubes in turbulent water flow condition. The integral-fin tubes investigated in this paper are nominally 19mm in diameter. Eight tubes have been used with trapezoidally shaped integral-fins having fin density from 748 to 1654 fpm and 10, 30 grooves. Plain tube having same diameter as finned tube is also tested for comparison. Experiments are carried out using R-11 as working fluid. The refrigerant condensates at a saturation state of $30^{\circ}C$ on the outside tube surface cooled by coolant. The amount of noncondensable gases present in the test loop is reduced to a negligible value by repeated purging. For a given heat input to the boiler and given cooling water flow rate, all test data are taken on steady state. The heat transfer loop is used for testing single long tubes and cooling water is pumped from a storage tank through filters and flowmeters to the horizontal test section where it is heated by steam condensing on the outside of the tube. The pressure drop across the test section is measured by means of pressure gauge and manometer. Each tube tested is cleaned with sodium dichromate pickling solution and well rinsed with water prior to installation in the test section. The results obtained in this study is as follows : 1. Based on inside diameter and nominal inside area, heat transfer of finned tube is enhanced up to 4 times as that of a plain tube at constant Reynolds number and up to 2 times at constant pumping power. 2. Friction factors are up to 1.6~2.1 times those of plain tube. 3. At a given Reynolds number, Nusselt number decrease with increasing pitch to diameter. 4. The constant pumping power ratio for low integral-fin tubes increase directly with the effective area to the nominal area ratio, and with the effective area diameter ratio.

  • PDF

Effects of a Guide Fin Blade on the Flow Characteristics in a Ventilating Axial Fan (환기용 축류팬의 가이드핀 블레이드 형상변화에 따른 유동특성에 관한 연구)

  • Park, Hong-Kwang;Lee, Jee-Keun;Rho, Byung-Joon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.12
    • /
    • pp.874-882
    • /
    • 2007
  • The effects of a guide fin blade on the flow characteristics in a ventilating axial fan were investigated experimentally. The guide fins were setup onto the pressure surface of the blade, and their effects on the flowrate were evaluated. Two types of the guide fin blade were designed. One is the stem fin blade, and the other is the radial fin blade. The stem fin is designed normal to the circumference of a circle, and the radial fin is designed along the circumference of a circle. The results from the guide fin blade fans are compared with that of the blade without guide fins. The position and the geometry of the radial fin setting up on the blade have an effect on the increase of flowrate with the minor sacrifice of rotational speed of the blades. The radial fin positioning at 0.84 times blade diameter shows highest performance in the flowrate. The increase of the blade weight resulting from applying the guide fins shows minor effect on the variation of rotational speed of the blades.

Characteristics of Near Wake Behind a Circular Cylinder with Serrated Fins (I) - Mechanism of Vortex Shedding - (톱니형 휜이 부착된 원주의 근접후류특성 연구 (I) - 와유출 메카니즘의 특성변화 규명 -)

  • Ryu, Byeong-Nam;Kim, Gyeong-Cheon;Bu, Jeong-Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.8
    • /
    • pp.1183-1190
    • /
    • 2002
  • An experimental study is performed to investigate the characteristics of near wake behind a circular cylinder with serrated fins using the constant temperature anemometer and through flow visualization. Previous report(Boo et al., 2001) shows that there are three different modes in vortex shedding behavior. This paper is focused on the identification of the physical reasons why the difference iss occured in vortex shedding. The through flow velocity crossing fins decreases as increasing fin height and decreasing fin pitch mainly due to the flow resistence. Vortex shedding is affected strongly by velocity distribution around fin tube, especially by the velocity gradient. The velocity distribution at X/d=0.0 has lower gradient with increasing freestream velocity and fin height and decreasing fin pitch. Those differences in velocity gradients generate different vortex shedding mechanism.

Numerically-Investigated Thermal Performances of Hybrid Fin Heat Sinks for Lightweight Thermal Management of LED Modules Under Natural Convection (자연대류상의 LED 모듈의 경량열관리를 위한 하이브리드 휜 히트싱크의 수치적으로 조사된 열성능)

  • Kim, Kyoung Joon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.6
    • /
    • pp.586-591
    • /
    • 2015
  • This study discusses numerically-explored thermal performances of hybrid fin heat sinks (HF HSs) for lightweight thermal management of LED modules under natural convection. A hollow hybrid fin heat sink (HHF HS) and a solid hybrid fin heat sink (SHF HS) are proposed as HF HSs. A 3-D CFD analysis has been carefully conducted to obtain reliable numerical results. The 3-D CFD study investigates the effects of both fin spacing and an internal channel diameter on performances of the HHF HS and the SHF HS. The study results show that the mass-based thermal resistance of the HHF HS is 20~32% smaller compared with the pin fin heat sink (PF HS). The results also show that the mass-based thermal resistance of the HHF HS decreases with the increase of the channel diameter. These results are mainly due to coupled effects of the mass reduction and heat pumping through an internal channel. Considerably superior mass-based thermal performances of the HHF HS to the conventional PF HS suggest the feasible application for the lightweight thermal management of the LED modules under natural convection.

Experimental study of air side pressure drop and heat transfer characteristics of wave and wave-slit fin-tube heat exchangers (웨이브 및 웨이브-슬릿 열전달촉진 휜-관 열교환기의 공기측 압력강하 및 열전달 특성에 관한 실험)

  • Yoon, Baek;Gil, Yong-Hyun;Park, Hyun-Yeon;Yoo, Guk-Chul;Kim, Young-Saeng
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.5
    • /
    • pp.589-599
    • /
    • 1998
  • Air side heat transfer and pressure drop for fin-tube heat exchanger with wave and wave-slit fins were measured for various fin spacings and number of tube rows. Outer diameter of the tube including fin collar is 10.07mm, and experiments were done with dry surface condition. Longitudinal and transverse tube spacings of the heat exchangers are 21.65mm and 25mm respectively, and wave depth of the wave fin is 2mm. Experiments were conducted for 1, 2 and 3 rows and 3 different fin spacings, 1.3, 1.5 and 1.7mm. An attempt was made to demonstrate advantage of the enhanced fins over the plane fin by introducing the concept of fan power, Effect of the number of tube rows on heat transfer was discussed in connection with general mechanisms of heat transfer enhancement for fin-tube heat exchanger. Also the effect of hydrophilic coating was investigated. Lastly, correlations for Colburn j-factor and friction factor were developed.

  • PDF

Evaporation Heat Transfer and Pressure Drop in Micro-Fin Tubes Before and After Tube-Expansion (마이크로핀관의 확관 전후 열전달 및 압력강하 변화 특성에 관한 연구)

  • Hwang, Yun-Uk;Kim, Min-Su
    • 연구논문집
    • /
    • s.34
    • /
    • pp.29-38
    • /
    • 2004
  • The objective of this study is to investigate the pressure drop and heat transfer characteristics of the micro-fin tubes before and after the tube-expansion process. Test tubes are single-grooved micro-fin tubes made of copper with an outer diameter of 9.52 mm before the tube-expansion. The direct heating method is applied in order to make the refrigerant evaporated in the micro-fin tubes. The test ranges of the heat flux, mass flux, and the saturation pressure are 5 to 15kW/$m^2$, 100 to 200 kg/$m^2s$ and 540 to 790 kPa, respectively. The effects of the mass flux, heat flux, and the saturation pressure of the refrigerant on the pressure drop and the heat transfer are presented for the refrigerant R22. In the test conditions of this study, the heat transfer coefficient for the micro-fin tube after the tube-expansion is about 16.5% smaller than that before the tube-expansion because the fin height of micro-fin is reduced and the fin shape becomes flatter. The micro-fin tube after the tube-expansion has about 7.7% greater average pressure drop than that before the tube-expansion process.

  • PDF

Experiments on the Cooling Characteristics of a Channel with Pin-Fin Array (핀-휜 배열을 이용한 채널의 냉각특성 실험)

  • Kim, Sang-Min;Shin, Jee-Young;Son, Young-Seok;Lee, Dae-Young
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.31-36
    • /
    • 2003
  • Recently, the power consumption and heat generation in an electronic equipment increase as the components are miniaturized and the computing speed becomes faster. Effective cooling method is required to ensure the guaranteed performance and reliable operation of the electronic devices. The aim of the present study is to investigate the cooling characteristics of a pin-fin heat exchanger as a candidate for cooling system of the electronic devices. Various configuration of the pin-fin array is selected in order to find out the effect of spacing and diameter of the pin-fin on the heat transfer characteristics. The results are compared with the experimental data or correlations of several researchers for the channel flow with pin-fin arrays.

  • PDF

Analysis on the Cooling Characteristics of a Channel with Pin-Fin Structure (핀-휜 구조물을 이용한 채널의 냉각특성 해석)

  • 신지영;손영석;이대영
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.8
    • /
    • pp.667-673
    • /
    • 2003
  • Recent trends in the electronic equipment indicate that the power consumption and heat generation in a chip increase as the components are miniaturized and the computing speed becomes faster. Suitable heat dissipation is required to ensure the guaranteed performance and reliable operation of the electronic devices. The aim of the present study is to investigate the forced-convective thermal-hydraulic characteristics of a pin-fin heat exchanger as a candidate for cooling system of the electronic devices. The influence of the structure of the pin-fin assembly on heat transfer is investigated by porous medium model. The results are compared with the experimental data or correlations of several researchers for the heat transfer coefficients for the channel flow with pin-fin arrays. Finally, the effects of design parameters such as the pin-fin diameter and the spacing are examined.

Development of Hybrid Expander Unit for Fin Tube Heat Exchanger (핀튜브 열교환기용 전관확관 유닛 개발)

  • Roh, Geonsang;Kim, Jongnam
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.4
    • /
    • pp.165-168
    • /
    • 2011
  • In this paper, the hybrid tube expander unit for fin and tube type heat exchanger are developed by means of enlarging and inserting the smooth tube with a small diameter to a finned tube having larger diameter. In other word, the tube expander tool that is easy to attach and remove from tube is developed. The hybrid tube expander unit developed in this study can move easily and enlarge the tube without fixing at tube sheet. Also, this unit has a function removing scales inside tube by replacing a tube expander ball.

An Experimental Study on Laminar Heat Transfer in Flat Aluminum Extruded Tubes Having Small Hydraulic Diameter

  • Kim, Nae-Hyun;Ham, Jung-Ho;Kim, Do-Young
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.15 no.2
    • /
    • pp.47-53
    • /
    • 2007
  • Laminar heat transfer experiments were conducted in flat extruded aluminum tubes. Three different flat tubes-two with smooth inner channel, one with micro-finned inner channel-were tested. Smooth tube data were in reasonable agreement with the predictions by simplified theoretical models. The heat transfer coefficients of the micro-fin tube were significantly smaller than those of the smooth tube. The reason was attributed to the decelerating flow in the inter-fin region. Heat transfer correlations were developed from the data.