• Title/Summary/Keyword: filter wheel

Search Result 94, Processing Time 0.026 seconds

A Study on the Estimation Method of the Wheel Acceleration (차륜 가속도 예측방법에 대한 연구)

  • 김중배;민중기
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.2
    • /
    • pp.120-126
    • /
    • 1997
  • In this study, an effective estimation method of wheel acceleration is presented. The wheel acceleration is mainly used in the ABS(anti-lick brake system) and the TCS(traction control system). The wheel acceleration is a derivative term of the wheel speed which is generally measured by the wheel speed sensors. The results of a simple differentiation of the signal and an observation of the signal by Kalman filter show that Kalman filter has better performance than the simple differentiation. The differentiated sine signal which is contaminated with random noise shows a rugged signal compared with the signal which is filtered by the Kalman filter. The covariance of the differentiated signal is higher than that of the Kalman-filtered signal, too. The presented Kalman filter technique shows an effective way of solution to get the estimated wheel acceleration value which is sufficient to be applied to ABS or TCS control algorithms.

  • PDF

Design of Fault Isolator of Satellite Reaction Wheel System Using Dual Filter and Multi-hypothesis Extended Kalman Filter (이중 필터와 다중 가설 확장 칼만 필터를 적용한 인공위성 반작용 휠의 고장 분리기 설계)

  • Choi, Kwang-Rok;Park, Chan-Gook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.12
    • /
    • pp.1225-1231
    • /
    • 2009
  • One reaction wheel cluster of satellite usually has four reaction wheels. Each wheel is not arranged parallel to the attitude axis of satellite. Therefore, if one reaction wheel is broken, it is very hard to isolate the fault except using the sensors of wheel itself. In this paper, the isolator of satellite reaction wheel cluster is designed. Using a dual filter, FDP(Fault Detection Parameter) is made to detect fault, and using a multi-hypothesis extended Kalman filter, fault isolation of wheel cluster is done. We verify the improvement of isolation performance of wheel cluster by simulation with 4-reaction wheel cluster.

Filter wheel design for CQUEAN II

  • Kim, Sanghyuk;Pak, Soojong;Lee, Hye-In;Im, Myunshin;Shin, Sang-Kyo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.51.2-51.2
    • /
    • 2014
  • CQUEAN(Camera for QUasars in EArly uNiverse) has been used at the 2.1 m Otto Struve Telescope of the McDonald Observatory since 2010. This camera is optimized at 0.7 - 1.1 um for the survey of Lyman break of high redshift (z > 5) quasars in the early universe. The current system has a filter wheel consist of seven (g', r', I', z', Y, Iz and Is) broad-band filters. We are upgrading this filter wheel to have 20 narrow band filters, with which we can take spectral energy distributions of targets. The new filter wheel consists of interchangeable cartridges for 50 mm square filters, a speed reducer unit, and a step motor. This new design of the large size filter wheel can be applied to other large format CCD cameras.

  • PDF

Vehicle State Estimation Robust to Wheel Slip Using Extended Kalman Filter (휠 슬립에 강건한 확장칼만필터 기반 차량 상태 추정)

  • Myeonggeun, Jun;Ara, Jo;Kyongsu, Yi
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.4
    • /
    • pp.16-20
    • /
    • 2022
  • Accurate state estimation is important for autonomous driving. However, the estimation error increases in situations that a lot of longitudinal slip occurs. Therefore, this paper presents a vehicle state estimation method using an Extended Kalman Filter. The filter estimates the states of the host vehicle robust to wheel slip. It utilizes the measurements of the four-wheel rotational speeds, longitudinal acceleration, yaw-rate, and steering wheel angle. Nonlinear measurement model is represented by Ackermann Model. The main advantage of this approach is the accurate estimation of yaw rate due to the measurement of the steering wheel angle. The proposed algorithm is verified in scenarios of autonomous emergency braking (AEB), lane change (LC), lane keeping (LK) using an automated vehicle. The results show that the proposed algorithm guarantees accurate estimation in such scenarios.

Vibration Control of a Single-wheel Robot Using a Filter Design (필터 설계를 통한 한 바퀴 구동 로봇의 진동 제어)

  • Lee, Sang-Deok;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.9
    • /
    • pp.863-868
    • /
    • 2015
  • In this paper, the vibration of a single-wheel mobile robot is minimized by designing a filter. An AHRS (Attitude and heading reference system) sensor is used for measuring the state of the robot. The measured signals are analyzed using the FFT method to investigate the fundamental vibrational frequency with respect to the flywheel's speed of the gimbal system. The IIR notch filter is then designed to suppress the vibration at the identified frequency. After simulating the performance of the designated filter using the measured sensor data through extensive experiments, the filter is actually implemented in a single-wheel mobile robot, GYROBO. Finally, the performance of the designed filter is confirmed by performing the balancing control task of the GYROBO system.

Designed and Implement of the Discrete Time Kalman Filter for Speed Estimation of the Sensorless Hub Wheel Motor (속도센서가 없는 허브-휠 전동기의 속도추정을 위한 이산시간 칼만필터의 설계 및 구현)

  • Jeon, Yong-Ho;Yee, Gi-Seo;Cho, Whang
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.2
    • /
    • pp.203-210
    • /
    • 2008
  • Since hub wheel BLDC Motor consisted of wheel and BLDCM (Brushless DC Motor) without gear reducer has high efficiency and low operation noise, it can be utilized to a driving wheel at some light rail systems. However, installing sensors for speedometer on a Hub-Wheel motor is not easy, so it requires a different speed control mechanism method for speed measurement. This paper introduces a speed control method based on simple mathematical model which uses discrete Kalman Filter to estimate and control the speed of the motor.

Performance Evaluation of RWA Vibration Isolator Using Notch Filter Control (노치 필터 제어기법을 이용한 반작용 휠 미소진동 절연장치의 절연성능 평가)

  • Park, Geeyong;Suh, Jong-Eun;Lee, Dae-Oen;Han, Jae-Hung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.4
    • /
    • pp.391-397
    • /
    • 2016
  • Vibration disturbances induced by the reaction wheels can severely degrade the performance of high precision payloads on board satellites with high pointing stability requirements. The unwanted disturbances produced by the reaction wheels are composed of fundamental harmonic disturbances due to the flywheel imbalance and sub/higher harmonic disturbances due to bearing irregularities, motor imperfections and so on. Because the wheel speed is constantly changed during the operation of a reaction wheel, the vibration disturbance induced by the reaction wheels can magnify the satellite vibration when the rotating frequency of wheel meets the natural frequency of satellite structure. In order to provide an effective isolation of the reaction wheel disturbances, isolation performance of a hybrid vibration isolator is investigated. In this paper, hybrid vibration isolator that combines passive and active components is developed and its hybrid isolation performance using notch filter control is evaluated in single-axis. The hybrid isolation performance using notch filter control show additional performance improvement compared to the results using only passive components.

Implementation of Educational Two-wheel Inverted Pendulum Robot using NXT Mindstorm (NXT Mindstorm을 이용한 교육용 이륜 도립진자 로봇 제작)

  • Jung, Bo Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.7
    • /
    • pp.127-132
    • /
    • 2017
  • In this paper, we propose a controller gain based on model based design and implement the two-wheel inverted pendulum type robot using NXT Lego and RobotC language. Two-wheel inverted pendulum robot consists of NXT mindstorm, servo DC motor with encoder, gyro sensor, and accelerometer sensor. We measurement wheel angle using bulit-in encoder and calculate wheel angle speed using moving average method. Gyro measures body angular velocity and accelerometer measures body pitch angle. We calculate body angle with complementary filter using gyro and accelerometer sensor. The control gain is a weighted value for wheel angle, wheel angular velocity, body pitch angle, and body pich angular velocity, respectively. We experiment and observe the effect of two-wheel inverted pendulum with respect to change of control gains.

Study on Noise Reduction of DLP Projector (DLP 프로젝터의 소음 저감 연구)

  • 박대경;장동섭
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.132-137
    • /
    • 2003
  • For the evaluation of acoustic noise of a DLP projector, vibration and sound characteristics of a DLP projector were studied. The acoustic noise of DLP projector could be classified into three categories, that is, the direct noise from a body of rotation, the air-bone noise generated from turbulence or vortex occurred during cooling process and the structural born noise produced by vibrating elements. Cooling fans and color filter wheel which rotates at 9000 rpm are main causes of acoustic noise induced in DLP projector. Since the structure of an optical module in a DLP projector can be excited by the excessive vibration of a color filter wheel, the structural design for anti-vibration should be considered. To make a reduction of overall acoustic noise, the anti-vibration design and the enclosing structure have been studied and applied to a color filter wheel.

  • PDF

Study on Noise Reduction of DLP Front Home Theater Projector (가정용 DLP 프로젝터의 소음 저감에 관한 연구)

  • Jang Dong Seob;Park Chul Min;Park Dae Kyong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.9 s.90
    • /
    • pp.861-867
    • /
    • 2004
  • For the evaluation of acoustic noise of a DLP projector, vibration and sound characteristics of a DLP projector were studied. The acoustic noise of DLP projector could be classified into three categories, that is, the direct noise from a body of rotation, the air-bone noise generated from turbulence or vortex occurred during cooling process and the structural born noise produced by vibrating elements. Cooling fans and color filter wheel which rotates at 9000 rpm are main causes of acoustic noise induced in DLP projector. Since the structure of an optical module in a DLP projector can be excited by the excessive vibration of a color filter wheel, the structural design for anti-vibration should be considered. To make a reduction of overall acoustic noise, the anti-vibration design and the enclosing structure have been studied and applied to a color filter wheel.