• Title/Summary/Keyword: film-cooling

Search Result 442, Processing Time 0.023 seconds

An Experimental Study of Film Cooling Characteristics at Supersonic Free Stream Conditions (초음속 주유동 환경에서의 막냉각 특성 시험 연구)

  • Kim, Manshik;Lee, Dong Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.4
    • /
    • pp.342-348
    • /
    • 2017
  • In this paper, film cooling characteristics at supersonic free stream conditions were examined experimentally by applying an IR-thermography. Film cooling experiments were carried out in a free-jet facility at Mach number of 3.0 and with unit Reynolds number of $42.53{\times}10^6$ and $69.35{\times}10^6$ using wedge shaped film cooling model which has a converging film cooling nozzle. Film cooling efficiency was calculated by measuring the surface temperature of PEEK(Polyether Ether Ketone) and the effects of angle of attack and blowing ratios on the film cooling efficiency were examined. The measured wall temperature was significantly reduced by the film cooling flow compared with the results without the film cooling flow. The usefulness of film cooling was also confirmed by the surface heat flux calculated using the surface temperature history of PEEK. As the blowing ratio increases the protected area of PEEK was also expanded along the direction of free stream and film cooling flow.

A Study on the Combination of Blowing Ratio and Injection Angle in 2-Dimensional Film Cooling (2차원 막냉각의 적정 분사비와 분사각도의 조합에 관한 연구)

  • Son, Chang-Ho;Lee, Geun-Sik;Won, Young-Ho;Rho, Suk-Man;Lee, Jong-Chun
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.553-558
    • /
    • 2001
  • To find the effective combinations of blowing ratio and injection angle for a straight slot film cooling, film cooling characteristics was investigated using both flow visualization experiment and numerical simulation. Injection angles from $15^{\circ}\;to\;50^{\circ}$ and blowing ratios from 0.2 to 3.0 were selected for the simulation. Comparison between experimental and numerical results shows a good agreement, for the case of the injection angle of $30^{\circ}$ and blowing ratio ranging from 0.55 to 2.0. Film cooling effectiveness was found to be an increasing function of blowing ratio. The effects of injection angle became prominent as the blowing ratio increases. An interesting phenomenon was found for the injection angle of $15^{\circ}$ : the lowest film cooling effectiveness for the blowing ratio smaller than 1.0, but the highest film cooling effectiveness for the blowing ratio greater than 2.0 within wide range of downstream region. There exist optimum injection angles corresponding to maximum film cooling effectiveness : injection angle of $25^{\circ}$ for the blowing ratio from 0.2 to 2.0, and injection angle of $15^{\circ}$ for the blowing ratio of 3.0. Present study provides a design combination among film cooling effectiveness, blowing ratio, and injection angle.

  • PDF

Effects of Various Injection Hole Shapes and Injection Angles on the Characteristics of Turbine Blade Leading Edge Film Cooling (분사홀 형상과 분사각 변화가 터빈블레이드 선단 막냉각 특성에 미치는 영향)

  • Kim, Yun-Je;Gwon, Dong-Gu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.7
    • /
    • pp.933-943
    • /
    • 2001
  • Using a semi-circled blunt body model, the geometrical effects of injection hole on the turbine blade leading edge film cooling are investigated. The film cooling characteristics of two shaped holes (laterally- and streamwise-diffused holes) and three cylindrical holes with different lateral injection angles, 30°, 45°, 60°, respectively, are compared with those of cylindrical hole with no lateral injection angle experimentally and numerically. Kidney vortices, which decrease the adiabatic film cooling effectiveness, appear on downstream of the cylindrical hole with no lateral injection angle. At downstream of the two shaped holes have better film cooling characteristics than the cylindrical one. Instead of kidney vortices, single vortex appears on downstream of injection holes with lateral injection angle. The adiabatic film cooling effectiveness is symmetrically distributed along the lateral direction downstream of the cylindrical hole with no lateral injection angle. But, at downstream of the cylindrical holes with lateral injection angle, the distribution of adiabatic film cooling effectiveness in the lateral direction shows asymmetric nature and high adiabatic film cooling effectiveness regions are more widely distributed than those of the cylindrical hole with no lateral injection angle. As the blowing ratio increases, also, the effects of hole shapes and injection angles increase.

Film Cooling from Two Rows of Holes with Opposite Orientation Angles(I) -Configuration Effect- (반대방향의 방향각을 갖는 2열 분사구조의 막냉각 특성(I) -배열의 영향-)

  • Ahn, Joon;Jung, In-Sung;Lee, Joon-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.8
    • /
    • pp.1122-1130
    • /
    • 2001
  • Film cooling performance from two rows of holes with opposite orientation angles is evaluated in terms of heat flux ratio. The film cooling hole has a fixed inclination angle of 35°and orientation angle of 45°for the downstream row and -45°for the upstream row. Four film cooling hole arrangements including inline and staggered configurations are investigated. The blowing ratio studied was 1.0. Boundary layer temperature distributions are measured to investigate injectant behaviors and mixing characteristics. Detailed distributions of the adiabatic film cooling effectiveness and the heat transfer coefficient are measured using TLC(Thermochromic Liquid Crystal). For the inline configuration, there forms a downwash flow at the downstream hole exit to make the injectant well attach to the wall, which gives high adiabatic film cooling effectiveness and heat transfer coefficient. The evaluation of heat flux ratio shows that the inline configuration gives better film cooling performance with the help of the downwash flow at the downstream hole exits.

Film Cooling from Two Rows of Holes with Opposite Orientation Angles(II) -Blowing Ratio Effect- (반대방향의 방향각을 갖는 2열 분사구조의 막냉각 특성(II) -분사비의 영향-)

  • Ahn, Joon;Jung, In-Sung;Lee, Joon-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.8
    • /
    • pp.1131-1139
    • /
    • 2001
  • Experimental results are presented, which describe the effect of blowing ratio on film cooling from two rows of holes with opposite orientation angles. The inclination angle is fixed at 35°, and the orientation angles are set to be 45°for the downstream row, and -45°for the upstream row. The studied blowing ratios are 0.5, 1.0 and 2.0. The boundary layer temperature distributions are measured using thermocouple at two downstream locations. Detailed adiabatic film cooling effectiveness and heat transfer coefficient distributions are measured with TLC(Thermochromic Liquid Crystal). The adiabatic film cooling effectiveness and heat transfer coefficient distributions are discussed in connection with the injectant behaviors inferred from the boundary layer temperature distributions. Film cooling performance, represented by heat flux is evaluated from the adiabatic film cooling effectiveness and heat transfer coefficient data. The results show that the investigated geometry provides improved film cooling performance at the high blowing ratios of 1.0 and 2.0.

Measurement of the Film Cooling Effectiveness using Pressure Sensitive Paint on Convergent/Divergent Channel (압력감응페인트를 이용한 확대/축소 유로에서의 막냉각 효율 측정)

  • Park, Seoung-Duck;Lee, Ki-Seon;Kim, Sung-Ha;Kim, Hark-Bong;Kwak, Jea-Su;Kim, Chun-Teak;Yang, Gyae-Byung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.6
    • /
    • pp.31-37
    • /
    • 2008
  • Film cooling effectiveness on the convergent or divergent channel was measured by pressure sensitive paint technique. The channel convergent or divergent angle was changed from $-5^{\circ}$ to $10^{\circ}$ and the tested blowing ratios were 0.5, 1 and 2. Results showed that the film cooling effectiveness on the convergent channel was not much affected by the convergent angle. With divergent film cooled surface, the film cooling effectiveness near the injection hole decreased as the divergent angle increases. However, the film cooling effectiveness at far downstream from the hole showed opposite trend. For the non-film cooled surface inclined case, the film cooling effectiveness was not much affected by the divergent angle.

A Study of Film Cooling of a Cylindrical Leading Edge with Shaped Injection Holes (냉각홀 형상 변화에 바른 원형봉 선단의 막냉각 특성 연구)

  • Kim, S.-M.;Kim, Youn J.;Cho, H.-H.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.298-303
    • /
    • 2002
  • Dispersion of coolant jets in a film cooling flow field is the result of a highly complex interaction between the film cooling jets and the mainstream. In order to investigate the effect of blowing ratios on the film cooling of turbine blade, cylindrical body model was used. Mainstream Reynolds number based on the cylinder diameter was $7.1{\times}10^4$. The effect of coolant flow rates was studied for blowing ratios of 0.7, 0.9, 1.2 and 1.5, respectively. The temperature distribution of the cylindrical model surface is visualized by infrared thermography (IRT). Results show that the film-cooling performance could be significantly improved by the shaped injection holes. For higher blowing ratio, the spanwise-diffused injection holes are better due to the lower momentum flux away from the wall plane at the hole exit.

  • PDF

Design Optimization of a Fan-Shaped Film-Cooling Hole Using a Radial Basis Neural Network Technique (홴형상 막냉각홀의 신경회로망 기법을 이용한 최적설계)

  • Lee, Ki-Don;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.4
    • /
    • pp.44-53
    • /
    • 2009
  • Numerical design optimization of a fan-shaped hole for film-cooling has been carried out to improve film-cooling effectiveness by combining a three-dimensional Reynolds-averaged Navier-Stokes analysis with the radial basis neural network method, a well known surrogate modeling technique for optimization. The injection angle of hole, lateral expansion angle of hole and ratio of length-to-diameter of the hole are chosen as design variables and spatially averaged film-cooling effectiveness is considered as an objective function which is to be maximized. Twenty training points are obtained by Latin Hypercube sampling for three design variables. Sequential quadratic programming is used to search for the optimal point from the constructed surrogate. The film-cooling effectiveness has been successfully improved by the optimization with increased value of all design variables as compared to the reference geometry.

Shape Optimization of Cylindrical Film-Cooling Hole Using Kriging Method (크리깅 기법을 이용한 원통형 막냉각 홀의 최적설계)

  • Lee, Ki-Don;Kim, Kwang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2729-2732
    • /
    • 2008
  • Cylindrical film-cooling hole is formulated numerically and optimized to enhance film-cooling effectiveness. The Kriging method is used an optimization technique with Reynolds-averaged Navier-Stokes analysis of fluid and heat transfer with shear stress transport model. The hole length-to-diameter ratio and injection angle are chosen as design variables and spatially averaged film-cooling effectiveness is considered as objective function which is to be maximized. Twelve training points obtained by Latin Hypercube Sampling for two design variables. Optimum shape shows the film-cooling effectiveness increased.

  • PDF

Measurement of Film Cooling Effectiveness and Heat Transfer of Rectangular-Shaped Film Cooling Holes (사각홀에서 막냉각 효율 및 열전달계수의 측정)

  • 이윤석;이동호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.5
    • /
    • pp.365-376
    • /
    • 2002
  • An experimental study has been conducted to measure the local film-cooling effectiveness and the heat transfer coefficient for a single row of rectangular-shaped holes. four different cooling hole shapes such ai a straight rectangular hole, a rectangular hole with laterally expanded exit, a circular hole and a two-dimensional slot are tested. A technique using thermochromic liquid crystals determine adiabatic film cooling effectiveness values and heat transfer coefficients on the test surface. Both film cooling effectiveness and heat transfer coefficient are measured for various blowing rates and compared with the results of the cylindrical ho1es and the two-dimensional slot. The flow patterns downstream of holes are calculated numerically using a cummercial package. The results show that the rectangular hopes provide better peformance than the cylindrical holes. For the rectangular holes with expanded exit, the penetration is reduced significantly, and the higher and more uniform cooling Peformance is obtained even at relatively high blowing rates.