• Title/Summary/Keyword: film properties

Search Result 7,326, Processing Time 0.034 seconds

Effect of Film Thickness on Structural, Electrical, and Optical Properties of Sol-Gel Deposited Layer-by-layer ZnO Nanoparticles

  • Shariffudin, S.S.;Salina, M.;Herman, S.H.;Rusop, M.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.2
    • /
    • pp.102-105
    • /
    • 2012
  • The structural, electrical, and optical properties of layer-by-layer ZnO nanoparticles deposited using sol-gel spin coating technique were studied and now presented. Thicknesses of the thin films were varied by increasing the number of deposited layers. As part of our characterization process, XRD and FE-SEM were used to characterize the structural properties, current-voltage measurements for the electrical properties, and UV-Vis spectra and photoluminescence spectra for the optical properties of the ZnO thin films. ZnO thin films with thicknesses ranging from 14.2 nm to 62.7 nm were used in this work. Film with thickness of 42.7 nm gave the lowest resistivity among all, $1.39{\times}10^{-2}{\Omega}{\cdot}cm$. Photoluminescence spectra showed two peaks which were in the UV emission centered at 380 nm, and visible emission centered at 590 nm. Optical transmittance spectra of the samples indicated that all films were transparent (>88%) in the visible-NIR range. The optical band gap energy was estimated to be 3.21~3.26 eV, with band gap increased with the thin film thickness.

Study on Thermoelectric Properties of Cu Doping of Pulse-Electrodeposited n-type Bi2(Te-Se)3 Thin Films (펄스 전기도금법에 의해 제조된 n형 Bi2(Te-Se)3 박막의 Cu 도핑에 따른 열전특성에 관한 연구)

  • Heo, Na-Ri;Kim, Kwang-Ho;Lim, Jae-Hong
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.1
    • /
    • pp.40-45
    • /
    • 2016
  • Recently, $Bi_2Te_3$-based alloys are the best thermoelectric materials near to room temperature, so it has been researched to achieve increased figure of merit(ZT). Ternary compounds such as Bi-Te-Se and Bi-Sb-Te have higher thermoelectric property than binary compound Bi-Te and Sb-Te, respectively. Compared to DC plating method, pulsed electrodeposition is able to control parameters including average current density, and on/off pulse time etc. Thereby the morphology and properties of the films can be improved. In this study, we electrodeposited n-type ternary Cu-doped $Bi_2(Te-Se)_3$ thin film by modified pulse technique at room temperature. To further enhance thermoelectric properties of $Bi_2(Te-Se)_3$ thin film, we optimized Cu doping concentration in $Bi_2(Te-Se)_3$ thin film and correlated it to electrical and thermoelectric properties. Thus, the crystal, electrical, and thermoelectric properties of electrodeposited $Bi_2(Te-Se)_3$ thin film were characterized the XRD, SEM, EDS, Seebeck measurement, and Hall effect measurement, respectively. As a result, the thermoelectric properties of Cu-doped $Bi_2(Te-Se)_3$ thin films were observed that the Seebeck coefficient is $-101.2{\mu}V/K$ and the power factor is $1412.6{\mu}W/mK^2$ at 10 mg of Cu weight. The power factor of Cu-doped $Bi_2(Te-Se)_3$ thin film is 1.4 times higher than undoped $Bi_2(Te-Se)_3$ thin film.

A NUMERICAL ANALYSIS ON THE BEHAVIOR OF LIQUID FILM AROUND A CURVED EDGE (곡률이 있는 모서리 주변에서의 액막 거동에 대한 수치해석적 연구)

  • Lee, Geonkang;Hur, Nahmkeon;Son, Gihun
    • Journal of computational fluids engineering
    • /
    • v.17 no.4
    • /
    • pp.75-80
    • /
    • 2012
  • Due to the effect of surface tension, liquid film around a curved edge of solid surface moves from the corner to the flat surface. During this behavior of liquid film, film sagging phenomenon is easily occurred at the solid surface. Behavior of liquid film is determined with the effects of the properties of liquid film and the geometric factors of solid surface. In the present study, 2-D transient CFD simulations were conducted on the behavior of liquid film around a curved edge. The two-phase interfacial flow of liquid film was numerically investigated by using a VOF method in order to predict the film sagging around a curved edge. In the steady state of behavior of liquid film, the liquid film thickness of numerical result showed a good agreement with experimental data. After verifying the numerical results, the characteristics of behavior of liquid film were numerically analyzed with various properties of liquid film such as surface tension coefficient and viscosity. The effects of geometric factors on film sagging were also investigated to reduce the film sagging around a curved edge.

Analysis of Surface Properties of PVC Thin Film according to Addition of Non-solvent to PVC-THF Solution (PVC-THF 용액에 비용매 첨가에 따른 PVC 박막의 표면 특성 분석)

  • Lee, Seung Gyu;Moon, Je Cheol;Lee, Won Gyu
    • Applied Chemistry for Engineering
    • /
    • v.33 no.4
    • /
    • pp.367-372
    • /
    • 2022
  • The effect of the addition of a polyvinylchloride (PVC) non-solvent to a PVC-tetrahydrofuran (THF) solution on the surface properties of the PVC thin film was analyzed. The non-solvents used were composed of alcohol-based and non-alcoholic ones. Surface morphologies of PVC thin films according to the addition of the non-solvent were compared. In addition, the hydrophobic properties relying on the surface characteristics were compared. The micro-bubbles generated in the preparation of PVC-THF solution affected the surface morphology of the thin film. In order to implement the normal surface physical properties of the coating thin film at the relatively high concentration of PVC-THF solution, the selection of appropriate drying method was required. When an alcohol-based non-solvent was added, a PVC thin film having a granular porous surface was obtained and exhibited super hydrophobic properties. The volume ratio of the PVC-THF solution to the non-solvent affects the surface shape of the coating thin film. The larger the amount of non-solvent was added, the more advantageous it was to form a super hydrophobic PVC thin film.

Preparation of PEDOT-TiO2 Composite Thin Film by Using Simultaneous Vapor Phase Polymerization (동시-기상중합법을 이용한 Poly(3,4-ethylenedioxythiophene)(PEDOT)-TiO2 하이브리드 박막 제조)

  • Ko, Young Soo;Han, Yong-Hyeon;Yim, Jin-Heong
    • Polymer(Korea)
    • /
    • v.38 no.4
    • /
    • pp.525-529
    • /
    • 2014
  • PEDOT-$TiO_2$ hybrid conductive thin film including semiconductive metal oxide was successfully prepared via simultaneous vapor phase polymerization (VPP). The mechanical properties such as pencil hardness and anti-scratch property as well as optoelectrical properties of PEDOT-$TiO_2$ hybrid thin film could be improved as compared with pristine PEDOT thin film. Physicochemically stable crosslinked $TiO_2$ layer derived from a sol-gel process by FTS was generated in the PEDOT thin film layer by simultaneous VPP, resulting in improving mechanical properties of the hybrid thin films without any deterioration of their original optoelectrical properties. PEDOT-$TiO_2$ hybrid thin film showed better electrical conductivity as compared with PEDOT film. It might be due to the fact that the surface morphology of hybrid thin film prepared by simultaneous VPP showed smoother than that of pristine PEDOT thin film.

Crystallographic study of in-plane aligned hybrid perovskite thin film

  • Lee, Rin;Kim, Se-Jun;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.163.1-163.1
    • /
    • 2016
  • Lead halide perovskites CH3NH3PbX3 (X=Cl, Br, I) have received great interest in the past few years because of their excellent photoelectronic properties as well as their low-cost solution process. Their theoretical efficiency limit of the solar cell devices was predicted around 31% by a detailed balance model for the reason that exceptional light-harvesting and superior carrier transport properties. Additionally, these excellent properties contribute to the applications of optoelectronic devices such as LASERs, LEDs, and photodetectors. Since these devices are mainly using perovskite thin film, one of the most important factor to decide the efficiency of these applications is the quality of the film. Even though, optoelectrical devices are composed of polycrystalline thin film in general, not a single crystalline form which has longer carrier diffusion length and lower trap density. For these reasons, monodomain perovskite thin films have potential to elicit an optimized device efficiency. In this study, we analyzed the crystallography of the in-plane aligned perovskite thin film by X-ray diffraction (XRD) and selected area electron diffraction (SAED). Also the basic optic properties of perovskites were checked using scanning electron microscopy (SEM) and UV-Vis spectrum. From this work, the perovskite which is aligned in all directions both of out-of-plane and in-plane was fabricated and analyzed.

  • PDF

Properties of Sputtered Ga Doped ZnO Thin Film Under Various Reaction Gas Ratio (Reaction Gas 변화에 따라 스퍼터된 Ga Doped ZnO 박막의 특성)

  • Kim, Jong-Wook;Kim, Hong-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.4
    • /
    • pp.289-293
    • /
    • 2013
  • We have studied structural, optical, and electrical properties of the Ga-doped ZnO (GZO) thin films being usable in transparent conducting oxides. The GZO thin films were deposited on the corning 1737 glass plate by the RF magnetron sputtering system. To find optimal properties of GZO for transparent conducting oxides, the Ar gas in sputtering process was varied as 40, 60, 80 and 100 sccm, respectively. As reaction gas decreased, the crystallinity of GZO thin film was increased, the optical bandgap of GZO thin film increased. The transmittance of the film was over 80% in the visible light range regardless of the changes in reaction gas. The measurement of Hall effect characterizes the whole thin film as n-type, and the electrical property was improved with decreasing reaction gas. The structural, optical, and electrical properties of the GZO thin films were affected by Ga dopant content in GZO thin film.

Excellent Magnetic Properties of Co53FE22Hf10O15 Thin Films

  • Tho, L.V.;Lee, K.E.;Kim, C.G.;Kim, C.G.;Cho, W.S.
    • Journal of Magnetics
    • /
    • v.11 no.4
    • /
    • pp.167-169
    • /
    • 2006
  • Nanocrystalline CoFeHfO thin films have been fabricated by RF sputtering method. It is shown that the CoFeHfO thin films possess not only high electrical resistivity but also large saturation magnetization and anisotropy field. Among the composition investigated, $Co_{53}FE_{22}Hf_{10}O_{15}$ thin film is observed to exhibit good soft magnetic properties: coercivity ($H_{c}$) of 0.18 Oe; anisotropy fild ($H_{k}$) of 49.92 Oe; saturation magnetization ($4{\Pi}M_{s}$) of 15.5 kG. The frequency response of permeability of the film is excellent. The excellent magnetic properties of this film in addition of an extremely high electrical resistivity (r) of $185\;{\mu}cm$ make it ideal for uses in high-frequency applications of micromagnetic devices. It is the formation of a peculiar microstructure that resulted in the superior properties of this film.

A study on electromechanical properties of CNT conductive film deposited on flexible substrate (유연 모재 위에 증착된 CNT 전도성 필름의 전기-기계적 특성에 대한 연구)

  • Song, Sun-Ah;Kim, Jae-Hyun;Lee, Hak-Joo;Song, Jin-Woo;Chang, Won-Seok;Han, Chang-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.35-39
    • /
    • 2008
  • In this study, electromechanical properties of carbon nanotube (CNT) thin film on flexible substrates were measured using a micro-tensile machine with functionality of simultaneous measurements of displacement, load and electrical resistance. The CNT thin film of about 100 nm thick was deposited on flexible substrates, polyethylene terephthalate (PET) using spraying and ink-jetting techniques. To investigate the effect of process condition on the electromechanical properties of CNT thin film, sets of CNT samples were fabricated under various heat treatments and microwave process. The microstructures of the CNT thin film before and after tensile test were investigated using Scanning Electron Microscope (SEM), and the failure modes of the CNT thin films were identified to understand their electromechanical behaviors and interaction with the flexible substrates. Based on the experimental results, the use of CNT thin film as flexible electrodes and strain gages is discussed.

  • PDF

Luminescence Properties of $Eu^{2+}$-doped $Ca_2Si_5N_8$ Thin Films ($Eu^{2+}$-doped $Ca_2Si_5N_8$ 박막의 광학특성)

  • Jang, Bo-Yun;Pakr, Joo-Seok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.25-27
    • /
    • 2007
  • $Eu^{2+}$-doped $Ca_2Si_5N_8$ was grown on Si(100) substrate using metal-organic deposition (MOD) method and post-annealed at $900^{\circ}C$ in various atmosphere. Luminescence properties of these thin films were investigated with variations of $Eu^{2+}$-doped concentrations and annealing atmosphere. Thin film was formed with clean surface and uniform thickness of about 72 nm. From the measurements of luminescence properties of thin films, film must be post-annealed in nitrogen or mixture of nitrogen and hydrogen atmosphere to emit a sufficient light. For $Ca_{1.5}Eu_{0.5}Si_5N_8$ thin film annealed at $900^{\circ}C$ in nitrogen atmosphere, excitation band from 380 to 420 nm was detected with the maximum intensity at 404 nm and two broad emission bands from 530 to 630 nm were observed. These broad excitation and emission bands must be attributed to the nitrogen incorporations into the films. From the results, $Ca_{2-x}Eu_xSi_5N_8$ thin film has probability for next generation thin film lighting applications such as light emitting diode (LED) or electro-luminescence (EL).

  • PDF