• Title/Summary/Keyword: film forming

Search Result 475, Processing Time 0.023 seconds

Changes of the surface hardness and the light transmittance of PET film by ion implantations (이온 주입에 의한 PET막의 표면경도변화 및 광 투과도 변화)

  • 박재원;이재형;이재상;장동욱;최병호;한준희
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.2
    • /
    • pp.241-246
    • /
    • 2001
  • Single or dual ion implantations were performed onto the transparent polyethylene terephthalate(PET) sheet, and the surface hardness and the light transmittance in the visual-UV range were examined. Nanoindentation showed that the surface hardness was the highest at about 50 nm depth from the surface and was increased by about 3 times when nitrogen ions were implanted with energy and dose of 90 keV and $1\times10^{15}\textrm{/cm}^2$ respectively. When dual ions such as He+N and N+C ions were implanted into PET, the hardness was increased even more than the case only N ions were implanted. Especially, when PET were implanted with N+C dual ions, the surface hardness of PET increased 5 times more as compared to when implanted with N ions alone. The light at the 550 nm wavelength(visual range) transmitted more than 85%, which is close to that of as-received PET, and at the wavelength below 300 nm(UV range) the rays were absorbed more than 95% as traveling through the sheet. implying that there are processing parameters which the ion implanted PET maintains the transparency and absorbs the UV rays. It can be considered that the increase in the hardness of polymeric materials is attributed to not only cross linking but also forming hard inclusions such as hard C-N compounds, as evidenced by the formation of the highest hardness when both N and C ions are implanted onto PET.

  • PDF

Synthesis and Analysis of Multi-functional Urethane Acrylate Monomer, and its Application as Curing Agent for Poly(phenylene ether)-based Substrate Material (다관능 우레탄 아크릴레이트 단량체의 합성과 분석, 및 폴리페닐렌에테르 기판소재용 경화성분으로의 적용)

  • Kim, Dong-Kook;Park, Seong-Dae;Oh, Jin-Woo;Kyoung, Jin-Bum
    • Polymer(Korea)
    • /
    • v.36 no.4
    • /
    • pp.413-419
    • /
    • 2012
  • Multi-functional urethane acrylate monomers as the curing agent of poly(phenylene ether) (PPE) were synthesized and then the urethane bond formation was checked by FTIR spectrometry and NMR analysis. The synthesized monomers were mixed with PPE and fabricated to dielectric substrates. After forming PPE/monomer composite sheets by a film coater, several sheets were laminated to a test substrate in a vacuum laminator and then its properties depending on the type and the amount of monomers, such as dielectric constant, dielectric loss, and peel strength, were measured. Between the two different hydroxyl acrylates, when the monomer synthesized with 2-hydroxy-3-phenoxypropyl acrylate containing a phenyl group was used as a curing agent, a smaller dielectric loss was obtained and the dielectric constant and loss decreased with a decrease in the amount of the monomer. The peel strength values of the test substrates, however, did not show any specific difference between the cases of two synthesized monomers. As a result, it was obtained the polymer substrate for high frequency application having peel strength of about 10 N, low dielectric constant of 2.54, and low dielectric loss of 0.0027 at 1 GHz.

Photochromic Properties of Cellulose Derivatives Having Spirobenzopyran Group (스피로벤조피란을 포함하는 셀룰로오스 유도체의 광변색 특성)

  • Xiangdan, Li;Kim, Eun-Kyoung;Lee, Myong-Hoon
    • Polymer(Korea)
    • /
    • v.29 no.1
    • /
    • pp.25-31
    • /
    • 2005
  • Cellulose acetate derivatives containing 6-(p-hexyloxyphenyl)carbonyl spirobenzopyran (CA-COSP) were prepared from base-catalyzed etherification of cellulose acetate, and their physical and photochromic properties were characterized. The degree of substitution of COSP was calculated from the amount of residual hydroxyl groups in cellulose acetate measured by the $^1H$-NMR and UV spectrometric data. It was ranging from 0.87 to 45.5% depending on the reaction condition. UV/vis spectrometry of the resulting CA-COSP revealed that the polymer shows a reversible color change by changing its color from colorless to blue upon UV irradiation forming a merocyanine structure, and returning back again to colorless spiropyran structure by visible light or by heat. The rate of color change was faster in solution than in the film. In the more polar solvent, the more stable was the resulting merocyanine, and the slower was the rate of reverse reaction to spiropyran. Compared to COSP blended with cellulose acetate, in which a phase separation was observed for samples containing more than 0.9 wt% of COSP, up to 48 wt% of COSP could be blended in CA-COSP without phase separation.

The Critical Pigment Volume Concentration Concept for Paper Coatings: II. Later-Bound Clay; Ground Calcium Carbonate, and Clay- carbonate Pigment Coatings

  • Lee, Do-Ik
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.34 no.5
    • /
    • pp.18-38
    • /
    • 2002
  • A previous study on the model coatings based on latex-bound plastic pigment coatings (1) has been extended to latex-bound No. 1 clay, ultra-fine ground calcium carbonate (UFGCC), and clay-carbonate pigment mixture coatings, which are being widely used in the paper industry. The latex binder used was a good film-forming, monodisperse S/B latex or 0.15$\mu\textrm{m}$. No. 1 clay was representative of plate-like pigment particles, whereas UFGCC was of somewhat rounded rhombohedral pigment particlel. Both of them had negatively skewed triangular particle size distributions having the mean particle suet of 0.7${\mu}{\textrm}{m}$ and 0.6$\mu\textrm{m}$, respectively. Their packing volumes were found to be 62.5% and 657%, respectively. while their critical pigment volume concentrations (CPVC's) were determined to be 52.7% and 50.5% ( average of 45% caused by the incompatibility and 55.9% extrapolated) by coating porosity, respectively. Each pigment/latex coating system has shown its unique relationship between coating properties and pigment concentrations, especially above its CPVC. Notably, the clay/latex coating system hat shown higher coating porosity than the UFGCC/latex system at high pigment concentrations above their respective CPVC's. It was also found that their coating porosity and gloss were inter-related to each other above the CPVC's, as predicted by the theory. More interestingly, the blends of these two pigments have shown unique rheological and coating properties which may explain why such pigment blends are widely used in the industry. These findings have suggested that the unique structure of clay coatings and the unique high-shear rheology of ground calcium carbonate coatings can be judiciously combined to achieve superior coatings. Importantly, the low-shear viscosity of the blends was indicative of their unique packing and coating structure, whereas their high-shear rheology was represented by a common mixing rule, i.e., a viscosity-averaging. Transmission and scanning electron and atomic force microscopes were used to probe the state of pigment / latex dispersions, coating surfaces, freeze fractured coating cross-sections, and coating surface topography. These microscopic studies complemented the above observations. In addition, the ratio, R, of CPVC/(Pigment Packing Volume) has been proposed as a measure of the binder efficiency for a given pigment or pigment mixtures or as a measure of binder-pigment interactions. Also, a mathematical model has been proposed to estimate the packing volumes of clay and ground calcium carbonate pigments with their respective particle size distributions. As well known in the particle packing, the narrower the particle size distributions, the lower the packing volumes and the greater the coating porosity, regardless of particle shapes.

The Improvement of Fabrication Process for a-Si:H TFT's Yield (a-Si:H TFT의 수율 향상을 위한 공정 개선)

  • Hur, Chang-Wu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.6
    • /
    • pp.1099-1103
    • /
    • 2007
  • TFT's have been intensively researched for possible electronic and display applications. Through tremendous engineering and scientific efforts, a-Si:H TFT fabrication process was greatly improved. In this paper, the reason on defects occurring at a-Si:H TFT fabrication process is analyzed and solved, so a-Si:H TFT's yield is increased and reliability is improved. The a-Si:H TFT of this paper is inverted staggered type TFT. The gate electrode is formed by patterning with length of $8{\mu}m{\sim}16{\mu}m$ and width of $80{\sim}200{\mu}m$ after depositing with gate electrode (Cr). We have fabricated a-SiN:H, conductor, etch-stopper and photo-resistor on gate electrode in sequence, respectively. We have deposited n+a-Si:H, NPR(Negative Photo Resister) layer after forming pattern of Cr gate electrode by etch-slower pattern. The NPR layer by inverting pattern of upper Sate electrode is patterned and the n+a-Si:H layer is etched by the NPR pattern. The NPR layer is removed. After Cr layer is deposited and patterned, the source-drain electrode is formed. The a-Si:H TFT made like this has problems at photo-lithography process caused by remains of PR. When sample is cleaned, this remains of PR makes thin chemical film on surface and damages device. Therefor, in order to improve this problem we added ashing process and cleaning process was enforced strictly. We can estimate that this method stabilizes fabrication process and makes to increase a-Si:H TFT's yield.

Laser Transmission Welding of Flexible Substrates and Evaluation of the Mechanical Properties (플렉서블 기판의 레이저 투과 용접 및 기계적 특성 평가)

  • Ko, Myeong-Jun;Sohn, Minjeong;Kim, Min-Su;Na, Jeehoo;Ju, Byeong-Kwon;Park, Young-Bae;Lee, Tae-Ik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.2
    • /
    • pp.113-119
    • /
    • 2022
  • In order to improve the mechanical reliability of next-generation electronic devices including flexible, wearable devices, a high level of mechanical reliability is required at various flexible joints. Organic adhesive materials such as epoxy for bonding existing polymer substrates inevitably have an increase in the thickness of the joint and involve problems of thermodynamic damage due to repeated deformation and high temperature hardening. Therefore, it is required to develop a low-temperature bonding process to minimize the thickness of the joint and prevent thermal damage for flexible bonding. This study developed flexible laser transmission welding (f-LTW) that allows bonding of flexible substrates with flexibility, robustness, and low thermal damage. Carbon nanotube (CNT) is thin-film coated on a flexible substrate to reduce the thickness of the joint, and a local melt bonding process on the surface of a polymer substrate by heating a CNT dispersion beam laser has been developed. The laser process conditions were constructed to minimize the thermal damage of the substrate and the mechanism of forming a CNT junction with the polymer substrate. In addition, lap shear adhesion test, peel test, and repeated bending experiment were conducted to evaluate the strength and flexibility of the flexible bonding joint.

Development of CNT Coating Process using Argon Atmospheric Plasma (아르곤 상압플라즈마를 이용한 CNT 코팅 공정 기술 개발)

  • Kim, Kyoung-Bo;Lee, Jongpil;Kim, Moojin
    • Journal of Industrial Convergence
    • /
    • v.20 no.10
    • /
    • pp.33-38
    • /
    • 2022
  • In this paper, a simple method of forming a solution-based carbon nanotube (CNT) for use as a conductive material for electronic devices was studied. The CNT thin film coating was performed on the glass by applying the spin coating method and the argon atmospheric pressure plasma process. In order to observe changes in electrical and physical properties according to the number of coatings, samples formed in the same manner from times 1 to 5 were prepared, and surface shape, reflectance, transmittance, absorbance, and sheet resistance were measured for each sample. As the number of coatings increased, the transmittance decreased, and the reflectance and absorptivity increased in the entire measurement wavelength range. Also, as the wavelength decreases, the transmittance decreases, and the reflectance and absorption increase. In the case of electrical properties, it was confirmed that the conductivity was significantly improved when the second coating was applied. In conclusion, in order to replace CNT with a transparent electrode, it is necessary to consider the number of coatings in consideration of reflectivity and electrical conductivity together, and it can be seen that 2 times is optimal.

Numerical study on the foam spraying for AFDSS applicable to initial fire suppression in large underground spaces (지하대공간 초동 화재진압에 적용가능한 자율형 소화체계의 폼 분사 해석 기법 연구)

  • Park, Jinouk;Yoo, Yongho;Kim, Whiseong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.503-516
    • /
    • 2021
  • Autonomous fire detection and suppression system requires advanced technology for complex detection technology and injection/control technology for accurate hitting by fire location. Also, foam spraying should be included to respond to oil fires. However, when a single spray monitor is used in common, water and foam spray properties appear different, so for accurate fire suppression, research on the spray trajectory and distance will be required. In this study, experimental studies and numerical analysis studies were combined to analyze the foam spray characteristics through the spray monitor developed for the establishment of an autonomous fire extinguishing system. For flow analysis of foam injection, modeling was performed using OpenFOAM analysis software, and the commonly used foaming agent (Aqueous Film-Forming Foam) was applied for foam properties. The injection distance analysis was performed according to the injection pressure and the injection angle according to the form of the foam, and at the same time, the results were verified and presented through the injection experiment.

Surface Roughness of Dentin and Formation of Early Cariogenic Biofilm after Silver Diamine Fluoride and Potassium Iodide Application (Silver Diamine Fluoride와 요오드화 칼륨 도포 후 상아질 표면 거칠기와 초기 우식원성 세균막 형성)

  • Haeni, Kim;Howon, Park;Juhyun, Lee;Siyoung, Lee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.49 no.2
    • /
    • pp.140-148
    • /
    • 2022
  • This study aimed to evaluate the effect of silver diamine fluoride (SDF) and potassium iodide (KI) on the formation of cariogenic biofilm and surface roughness in vitro. A total of 48 bovine dentin specimens with artificially induced caries were prepared and divided into 3 groups of 16: untreated control, SDF-treated, and SDF-treated followed by KI (SDFKI). Ten specimens from each group were used to observe microbial adhesion. Multispecies cariogenic biofilms including Streptococcus mutans, Lactobacillus casei, and Candida albicans were cultured on the specimens. Microbes were cultured for 24 hours, and the colony-forming unit was calculated. The remaining specimens were observed by atomic force microscope and scanning electron microscope (SEM). The number of bacteria was significantly lower in the SDF and SDFKI groups. KI did not inhibit the antibacterial activity of SDF significantly. SEM images showed particles generated after SDF and SDFKI application were deposited on the dentin, but there was no significant difference in surface roughness between the 3 groups. This study confirmed that SDF and SDFKI application did not have a significant effect on the surface roughness of dentin, but effectively inhibited the formation of the early cariogenic bacterial film after 24 hours compared to the control.

The Study on the Role of 3D Animated Pre-visualization in VFX FilmProduction (VFX 영화 제작을 위한 3D animatied Pre-visualization(3D애니메이티드 사전시각화)의 역할에 관한 연구)

  • Park, Sung-Ho
    • Cartoon and Animation Studies
    • /
    • s.51
    • /
    • pp.293-319
    • /
    • 2018
  • Thanks to the advancement of the related technologies and equipment, today's video contents like movies, animations and soap operas are rapidly expanding their expressible cinematic imagination area. In order to fulfill the elevated visual expectations of audiences and realize exciting storytelling and fantastic world, the fusion of different techniques is actively used, and the reality for visual effects and image synthesis is increasing more and more. Accordingly, recent VFX-oriented movies using CG have a much more complicated production process than before. Therefore, the importance of Pre-visualization, aka Pre-vis is becoming bigger in the planning process for sophisticated design. Pre-vis means that the advance visualization for stories or directing ideas in the planning process before starting production of movies or animations. 3D animated Pre-visualization realizing directors' abstract and ambiguous ideas in 3 dimensional environment in advance is, as a powerful means for visual storytelling, briskly used focusing on the VFX film industry on which the present CG is broadly used, and the role of Pre-vis throughout productions has increased compared to the past. The studies, however, on the role and utility of Pre-vis are not enough. Therefore, this study was conducted on the role of Pre-vis used for present VFX movie productions using the examples of 3D animated Pre-visualization production in which the researcher of this study participated. In this study, the role of the Pre-vis that is subdivided presently, is divided into and 3D animatics and their each role is analyzed with the example images. Through this, the characteristics that Pre-vis should have are clarified and the concept of the advantages and utility led by the use of Pre-vis in productions is strengthened. The goal of this study is to induce active uses of Pre-vis throughout productions after forming consensus about the various roles of Pre-vis and their utility.