• Title/Summary/Keyword: film crystallinity

Search Result 643, Processing Time 0.025 seconds

Comparison of Nitrogen and Oxygen Annealing Effects on the Structural, Optical and Electrical Properties of ALD-ZnO Thin Films (ALD법으로 증착한 ZnO 박막의 열처리 분위기에 따른 구조적, 전기적 특성 비교)

  • Park Y. K.;Park A. N.;Lee C. M.
    • Korean Journal of Materials Research
    • /
    • v.15 no.8
    • /
    • pp.514-517
    • /
    • 2005
  • Effects of nitrogen and oxygen annealing on the carrier concentration, carrier mobility, electrical resistivity and PL characteristics as well as the crystallinity of ZnO films deposited on sapphire substrates by atomic layer deposition (ALD). X-ray diffraction (XRD), Scanning electron microscope (SEM), photoluminescence (PL) analyses, and Hall measurement were performed to investigate the crystallinity, optical properties and electrical properties of the ZnO thin films, respectively. According to the XRD analysis results the crystallinity of the ZnO film annealed in an oxygen atmosphere is better than that of the ZnO film annealed in a nitrogen atmosphere. Annealing undoped ZnO films grown by ALD at a high temperature above $600^{\circ}C$ improves the crystallinity and enhances W emission but deteriorates the electrical conductivity of the flms. The resistivity of the ZnO film annealed particularly at $800^[\circ}C$ in a nitrogen atmosphere is much higher than that annealed at the same temperature in an oxygen atmosphere.

Characteristics of Zns:Mn Thin Film Electroluminescences Prepared by a Repeated Deposition of Hot Wall Method (Hot Wall 법의 반복 증착에 의해 제작한 ZnS:Mn 박막 엘렉트로루미네센스의 특성)

  • 이상태
    • Journal of the Korean Institute of Navigation
    • /
    • v.25 no.4
    • /
    • pp.435-442
    • /
    • 2001
  • A new technique to grow a manganese-doped zinc-sulfide(ZnS:Mn) has been proposed using the repeated deposition of the Hot Wall method. The optical characteristics and crystallinity for the ZnS and ZnS:Mn thin films deposited on a quartz glass substrate by the method were investigated. Also, The ZnS:Mn thin film elcetroluminescent devices were fabricated by the method to study luminescence characteristics. All films showed (111)-oriented cubic structure. By the repeated deposition, the deposition rates were decreased, and the optical characteristics and crystalline properties were improved, which clarifies that the method is effective to deposit the thin films with good crystallinity Futhermore, the crystallinity was more improved by the doping of Mn. Only one peak emission at around 585nm originating from Mn luminescent center is observed In the photoluminescent and electroluminescent spectra of ZnS:Mn films and the luminance of the ZnS:Mn-based thin film electroluminescent devices was obtained below 60cd/$m^2$ . The optical and crystalline properties, luminescence characteristics are discussed in terms of the effects of the repeated deposition and Mn-doping.

  • PDF

Effect of deposition condition on the properties of diamond thin films synthesized by MWPCVD (MWPCVD에 의해 합성된 다이아몬드 박막 특성에 대한 증착조건의 영향)

  • Lee, B.S.;Shin, T.H.;Yuk, J.H.;Cho, G.S.;You, D.H.;Park, S.H.;Lee, N.H.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1696-1698
    • /
    • 1999
  • The methastable state diamond films have been deposited on Si substrates using MWPCVD. Effects of each experimental parameters of MWPCVD including $CH_4$ conentrations, Oxygen additions, Operating pressure, etc. on the growth rate and crystallinity were invesitigated. The best crystallinity of the film at 3% methane concentration addition of oxygen to the $CH_4-H_2O$ mixture gave an improved film crystallinity at 50% oxygen concentration. Upon increasing the operating pressure, the growth rate and crystallinity were increased simultaneously.

  • PDF

Characteristics of Ti Thin films and Application as a Working Electrode in TCO-Less Dye-Sensitized Solar Cells

  • Joo, Yong Hwan;Kim, Nam-Hoon;Park, Yong Seob
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.2
    • /
    • pp.93-96
    • /
    • 2017
  • The structural, electrical and optical properties of Ti thin films fabricated by dual magnetron sputtering were investigated under various film thicknesses. The fabricated Ti thin films exhibited uniform surfaces, crystallinity, various grain sizes, and with various film thicknesses. Also, the crystallinity and grain size of the Ti thin films increased with the increase of film thickness. The electrical properties of Ti thin films improved with the increase of film thickness. The results showed that the performance of TCO-less DSSC critically depended on the film thickness of the Ti working electrodes, due to the conductivity of Ti thin film. However, the maximum conversion efficiency of TCO-less DSSC was exhibited at the condition of 100 nm thickness due to the surface scattering of photons caused by the variation of grain size.

Fabrications and properties of ZnS thin film used as a buffer layer of electroluminescent device (전계발광소자 완충층용 ZnS 박막 제작 및 특성)

  • 김홍룡;조재철;유용택
    • Electrical & Electronic Materials
    • /
    • v.7 no.2
    • /
    • pp.117-122
    • /
    • 1994
  • The role of ZnS buffer layer not only suppresses chemical reactions between emission material and insulating material but also alters the luminescence and the crystallinity of the emission layer, if ZnS buffer layer was sandwiched between emission layer and insulating layer of electroluminescent device. In this research, we fabricated ZnS thin film with rf magnetron sputter system by varying rf power 100, 200W, substrate temperature 100, 150, 200, 250.deg. C and post-annealing temperature 200, 300, 400, 500.deg. C and analysed X-ray diffraction pattern, transmission spectra and cross section by SEM photograph for seeking the optimal crystallization condition of ZnS buffer layer. As a result, increasing the rf power, the crystallinity of ZnS thin film was improved. It was found that the ZnS thin film had better properties than anything else when fabricated with the following conditions ; rf power 200W, substrate temperature 150.deg. C, and post-annealing temperature 400.deg. C. ZnS thin film had the transmittance more than 80% in visible range. So it is suitable to use as a buffer layer of electroluminescent devices.

  • PDF

Investigations on Microcrystalline Silicon Films for Solar Cell Application

  • Hwang, Hae-Sook;Park, Min-Gyu;Ruh, Hyun;Yu, Hyun-Ung
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2909-2912
    • /
    • 2010
  • Hydrogenated microcrystalline silicon (${\mu}c$-Si:H) thin film for solar cells is prepared by plasma-enhanced chemical vapor deposition and physical properties of the ${\mu}c$-Si:H p-layer has been investigated. With respect to stable efficiency, this film is expected to surpass the performance of conventional amorphous silicon based solar cells and very soon be a close competitor to other thin film photovoltaic materials. Silicon in various structural forms has a direct effect on the efficiency of solar cell devices with different electron mobility and photon conversion. A Raman microscope is adopted to study the degree of crystallinity of Si film by analyzing the integrated intensity peaks at 480, 510 and $520\;cm^{-1}$, which corresponds to the amorphous phase (a-Si:H), microcrystalline (${\mu}c$-Si:H) and large crystals (c-Si), respectively. The crystal volume fraction is calculated from the ratio of the crystalline and the amorphous phase. The results are compared with high-resolution transmission electron microscopy (HR-TEM) for the determination of crystallinity factor. Optical properties such as refractive index, extinction coefficient, and band gap are studied with reflectance spectra.

Electrical and Electromagnetic Shielding Properties of Polyaniline Films with Different Degrees of Crosslinking (교차결합의 변화에 따른 Polyaniline 필름의 전기적 성질과 전자기차폐 성질에 관한 연구)

  • 김재욱
    • Electrical & Electronic Materials
    • /
    • v.10 no.1
    • /
    • pp.54-60
    • /
    • 1997
  • The electrical and electromagnetic shielding properties have been investigated in polyaniline free standing films with different degrees of elongation cast from N-methyl 2-pyrrolidone(NMP) solution and camphorsulfonic acid(HCSA) doped polyaniline film. The degree of crystallinity of the crosslinked films increased with increasing the draw ratio. For the case of the oriented films doped with hydrochloric acid, we have the values of conductivities up to 173 S/cm. It is considered that the physical micro-crystalline crosslinking domains act as nucleation sites for the increase of relative crystallinity during stretching. We have obtained the value of conductivity 210 S/cm in the HCSA doped polyaniline film cast from the solvent of m-cresol, which is higher than that of the crosslinking oriented films. The electromagnetic shielding efficiency of HCSA doped polyaniline film obtained 37-41 dB in the frequency range of 10MHz-1GHlz, which is higher than that of the crosslinking oriented films. The higher value of electromagnetic shielding efficiency of HCSA doped polyaniline film suggests strong possibility of electromagnetic shielding material.

  • PDF

Study on Properties of Antimony-doped Tin Oxide Thin Films Prepared by Sputtering (Sputtering 방법에 의해 제조된 Sb가 도핑된 주석산화물 박막의 특성에 관한 연구)

  • 김층완;김광호;이환수;이혜용
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.7
    • /
    • pp.735-742
    • /
    • 1996
  • Antimony-doped Tin oxide (ATO) thin films were deposited on soda-lime glass substrates by DC magnetron sputtering technique. Effects of DC power film thickness and post heat-treatment on electrical conductivity of ATO film were investigated. Other properties of ATO film such as optical anti-chemical and wear properties were also reported in this work. The obtained ATO films showed electrical resistivities ranging from 5$\times$10-3 $\Omega$cm to 3$\times$10-3 $\Omega$cm with the average optical transparency above 80% in visible wavelength range and excel-lent anti-chemical properties where the electrical resistivity was not changed even after soaking the films in 1M HCl or 1M NaOH solution for 10 days. These properties were found to be related to the crystallinity of ATO film and the films having higher crystallinity showed better properties.

  • PDF

MWPCVD에 의해 합성된 다이아몬드 박막 특성에 대한 증착조건의 영향

  • 이병수;박상현;신태현;유도현;이덕출
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.97-97
    • /
    • 2000
  • In this thesis, the metastable state diamond thin films have been deposited on Si substrates from methane-hydrogen and oxygen mixture using Microwave Plasma Enhanced Chemical Vapor deposition (MWPCVD) method. Effects of each experimental parameters of MWPCVD including methane concentrations, oxygen additions, operating pressure, deposition time, etc. on the growth rate and crystallinity were investigated. SEM, XRD, and Raman spectroscopy were employed to analyze the growth rate and morphology, crystallinity and prefered growth direction, and relative amounts of diamond and non-diamond phases respectively. As a methane concentration below 4%, the deposited films having well-defined facets could be obtained. As the methane concentration increases over 4%, the shape of films gradually changed into a amorphos form. The best crystallinity of the film at 3% in the Raman spectroscopy. Addition of oxygen to the methane-hydrogen mixture gave an improved film crystallinity at 50% oxygen concentration due to its more effectiveness in the selective removal of the non-diamond phased compared to the of H atom. on the contrary, the growth rate generally decreased by oxygen to from the more stable CO and CO2 is responsible for such an effect. Upon increasing the operating pressure and time, increased of growth rate and crystallinity were increased simultaneously.

  • PDF

Fabrication and Characterization of Ni-Cr Alloy Thin Films for Application to Precision Thin Film Resistors

  • Lee, Boong-Joo;Shin, Paik-Kyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.4
    • /
    • pp.525-531
    • /
    • 2007
  • Ni(75 wt.%)-Cr(20 wt.%)-Al(3 wt.%)-Mn(4 wt.%)-Si(1 wt.%) alloy thin films were prepared using the DC magnetron sputtering process by varying the sputtering conditions such as power, pressure, substrate temperature, and post-deposition annealing temperature in order to fabricate a precision thin film resistor. For all the thin film resistors, sheet resistance, temperature coefficient of resistance (TCR), and crystallinity were analyzed and the effects of sputtering conditions on their properties were also investigated. The oxygen content and TCR of Ni-Cr-Al-Mn-Si resistors were decreased by increasing the sputtering pressure. Their sheet resistance, TCR, and crystallinity were enhanced by elevating the substrate temperature. In addition, the annealing of the resistor thin films in air at a temperature higher than $300^{\circ}C$ lead to a remarkable rise in their sheet resistance and TCR. This may be attributed to the improved formation of NiO layer on the surface of the resistor thin film at an elevated temperature.