• 제목/요약/키워드: filling support structure

검색결과 16건 처리시간 0.021초

Reliability of mortar filling layer void length in in-service ballastless track-bridge system of HSR

  • Binbin He;Sheng Wen;Yulin Feng;Lizhong Jiang;Wangbao Zhou
    • Steel and Composite Structures
    • /
    • 제47권1호
    • /
    • pp.91-102
    • /
    • 2023
  • To study the evaluation standard and control limit of mortar filling layer void length, in this paper, the train sub-model was developed by MATLAB and the track-bridge sub-model considering the mortar filling layer void was established by ANSYS. The two sub-models were assembled into a train-track-bridge coupling dynamic model through the wheel-rail contact relationship, and the validity was corroborated by the coupling dynamic model with the literature model. Considering the randomness of fastening stiffness, mortar elastic modulus, length of mortar filling layer void, and pier settlement, the test points were designed by the Box-Behnken method based on Design-Expert software. The coupled dynamic model was calculated, and the support vector regression (SVR) nonlinear mapping model of the wheel-rail system was established. The learning, prediction, and verification were carried out. Finally, the reliable probability of the amplification coefficient distribution of the response index of the train and structure in different ranges was obtained based on the SVR nonlinear mapping model and Latin hypercube sampling method. The limit of the length of the mortar filling layer void was, thus, obtained. The results show that the SVR nonlinear mapping model developed in this paper has a high fitting accuracy of 0.993, and the computational efficiency is significantly improved by 99.86%. It can be used to calculate the dynamic response of the wheel-rail system. The length of the mortar filling layer void significantly affects the wheel-rail vertical force, wheel weight load reduction ratio, rail vertical displacement, and track plate vertical displacement. The dynamic response of the track structure has a more significant effect on the limit value of the length of the mortar filling layer void than the dynamic response of the vehicle, and the rail vertical displacement is the most obvious. At 250 km/h - 350 km/h train running speed, the limit values of grade I, II, and III of the lengths of the mortar filling layer void are 3.932 m, 4.337 m, and 4.766 m, respectively. The results can provide some reference for the long-term service performance reliability of the ballastless track-bridge system of HRS.

BOTDA based water-filling and preloading test of spiral case structure

  • Cui, Heliang;Zhang, Dan;Shi, Bin;Peng, Shusheng
    • Smart Structures and Systems
    • /
    • 제21권1호
    • /
    • pp.27-35
    • /
    • 2018
  • In the water-filling and preloading test, the sensing cables were installed on the surface of steel spiral case and in the surrounding concrete to monitor the strain distribution of several cross-sections by using Brillouin Optical Time Domain Analysis (BOTDA), a kind of distributed optical fiber sensing (DOFS) technology. The average hoop strain of the spiral case was about $330{\mu}{\varepsilon}$ and $590{\mu}{\varepsilon}$ when the water-filling pressure in the spiral case was 2.6 MPa and 4.1 MPa. The difference between the measured and the calculated strain was only about $50{\mu}{\varepsilon}$. It was the first time that the stress adjustment of the spiral case was monitored by the sensing cable when the pressure was increased to 1 MPa and the residual strain of $20{\mu}{\varepsilon}$ was obtained after preloading. Meanwhile, the shrinkage of $70{\sim}100{\mu}{\varepsilon}$ of the surrounding concrete was effectively monitored during the depressurization. It is estimated that the width of the gap between the steel spiral case and the surrounding concrete was 0.51 ~ 0.75 mm. BOTDA based distributed optical fiber sensing technology can obtain continuous strain of the structure and it is more reliable than traditional point sensor. The strain distribution obtained by BOTDA provides strong support for the design and optimization of the spiral case structure.

Adsorption of Carbon Dioxide onto Tetraethylenepentamine Impregnated PMMA Sorbents with Different Pore Structure

  • Jo, Dong Hyun;Park, Cheonggi;Jung, Hyunchul;Kim, Sung Hyun
    • Korean Chemical Engineering Research
    • /
    • 제53권3호
    • /
    • pp.382-390
    • /
    • 2015
  • Poly(methyl methacrylate) (PMMA) supports and amine additives were investigated to adsorb $CO_2$. PMMA supports were fabricated by using different ratio of pore forming agents (porogen) to control the BET specific surface area, pore volume and distribution. Toluene and xylene are used for porogens. Supported amine sorbents were prepared by wet impregnation of tetraethylenepentamine (TEPA) on PMMA supports. So we could identify the effect of the pore structure of supports and the quantity of impregnated TEPA on the adsorption capacity. The increased amount of toluene as pore foaming agent resulted in the decreased average pore diameter and the increased BET surface area. Polymer supports with huge different pore distribution could be fabricated by controlling the ratio of porogen. After impregnation, the support with micropore structure is supposed the pore blocking and filling effect so that it has low $CO_2$ capacity and kinetics due to the difficulty of diffusing. Macropore structure indicates fast adsorption capacity and low influence of amine loading. In case of support with mesopore, it has high performance of adsorption capacity and kinetics. So high surface area and meso-/macro- pore structure is suitable for $CO_2$ capture.

암반매입말뚝을 위한 주면고정액의 역학적 특성 (Mechanical Properties of Filling Materials for Bored Pile in Rock)

  • 문경태;박상렬;신민건
    • 대한토목학회논문집
    • /
    • 제37권4호
    • /
    • pp.637-645
    • /
    • 2017
  • 제주도는 여러 차례의 화산활동에 의해 형성된 섬으로 불규칙한 화산암층 구조를 가지고 있다. 해상풍력발전기와 같은 구조물은 기초에서부터 하중 작용점까지의 거리가 멀고 상대적으로 큰 수평하중이 작용하여 매우 큰 전도모멘트를 지지해야 한다. 이러한 구조물을 경제적으로 지지하기 위해서는 암반층이라도 말뚝기초를 시공해야 한다. 따라서 본 연구에서는 암반매입말뚝을 위한 주면고정액의 적정배합비를 찾기 위하여 물, 시멘트, 모래의 배합비를 달리하여 역학적 성능을 평가하고, 실험 결과와 기존 연구 결과를 비교분석하였다. 동일한 배합조건에서 시멘트풀과 소일시멘트보다 모르타르(잔골재 비=20~40%)의 역학적 성능이 우수하게 나타났다. 이 결과를 바탕으로 적정배합범위와 강도추정식을 제안하였다.

Optimization study on roof break direction of gob-side entry retaining by roof break and filling in thick-layer soft rock layer

  • Yang, Dang-Wei;Ma, Zhan-Guo;Qi, Fu-Zhou;Gong, Peng;Liu, Dao-Ping;Zhao, Guo-Zhen;Zhang, Ray Ruichong
    • Geomechanics and Engineering
    • /
    • 제13권2호
    • /
    • pp.195-215
    • /
    • 2017
  • This paper proposes gob-side entry retaining by roof break and filling in thick-layer soft rock conditions based on the thick-layer soft rock roof strata migration law and the demand for non-pillar gob-side entry retaining projects. The functional expressions of main roof subsidence are derived for three break roof direction conditions: lateral deflection toward the roadway, lateral deflection toward the gob and vertically to the roof. These are derived according to the load-bearing boundary conditions of the main roadway roof stratum. It is concluded that the break roof angle is an important factor influencing the stability of gob-side entry retaining surrounding rock. This paper studies the stress distribution characteristics and plastic damage scope of gob-side entry retaining integrated coal seams, as well as the roof strata migration law and the supporting stability of caving structure filled on the break roof layer at the break roof angles of $-5^{\circ}$, $0^{\circ}$, $5^{\circ}$, $10^{\circ}$ and $15^{\circ}$ are studied. The simulation results of numerical analysis indicate that, the stress concentration and plastic damage scope to the sides of gob-side entry retaining integrated coal at the break roof angle of $5^{\circ}$ are reduced and shearing stress concentration of the caving filling body has been eliminated. The disturbance of coal mining to the roadway roof and loss of carrying capacity are mitigated. Field tests have been carried out on air-return roadway 5203 with the break roof angle of $5^{\circ}$. The monitoring indicates that the break roof filling section and compaction section are located at 0-45 m and 45-75 m behind the working face, respectively. The section from 75-100 m tends to be stable.

Experimental study on models of cylindrical steel tanks under mining tremors and moderate earthquakes

  • Burkacki, Daniel;Jankowski, Robert
    • Earthquakes and Structures
    • /
    • 제17권2호
    • /
    • pp.175-189
    • /
    • 2019
  • The aim of the study is to show the results of complex shaking table experimental investigation focused on the response of two models of cylindrical steel tanks under mining tremors and moderate earthquakes, including the aspects of diagnosis of structural damage. Firstly, the impact and the sweep-sine tests have been carried out, so as to determine the dynamic properties of models filled with different levels of liquid. Then, the models have been subjected to seismic and paraseismic excitations. Finally, one fully filled structure has been tested after introducing two different types of damages, so as to verify the method of damage diagnosis. The results of the impact and the sweep-sine tests show that filling the models with liquid leads to substantial reduction in natural frequencies, due to gradually increasing overall mass. Moreover, the results of sweep-sine tests clearly indicate that the increase in the liquid level results in significant increase in the damping structural ratio, which is the effect of damping properties of liquid due to its sloshing. The results of seismic and paraseismic tests indicate that filling the tank with liquid leads initially to considerable reduction in values of acceleration (damping effect of liquid sloshing); however, beyond a certain level of water filling, this regularity is inverted and acceleration values increase (effect of increasing total mass of the structure). Moreover, comparison of the responses under mining tremors and moderate earthquakes indicate that the power amplification factor of the mining tremors may be larger than the seismic power amplification factor. Finally, the results of damage diagnosis of fully filled steel tank model indicate that the forms of the Fourier spectra, together with the frequency and power spectral density values, can be directly related to the specific type of structural damage. They show a decrease in the natural frequencies for the model with unscrewed support bolts (global type of damage), while cutting the welds (local type of damage) has resulted in significant increase in values of the power spectral density for higher vibration modes.

A caving self-stabilization bearing structure of advancing cutting roof for gob-side entry retaining with hard roof stratum

  • Yang, Hongyun;Liu, Yanbao;Cao, Shugang;Pan, Ruikai;Wang, Hui;Li, Yong;Luo, Feng
    • Geomechanics and Engineering
    • /
    • 제21권1호
    • /
    • pp.23-33
    • /
    • 2020
  • An advancing cutting roof for gob-side entry retaining with no-pillar mining under specific geological conditions is more conducive to the safe and efficient production in a coalmine. This method is being promoted for use in a large number of coalmines because it has many advantages compared to the retaining method with an artificial filling wall as the gateway side filling body. In order to observe the inner structure of the gateway cutting roof and understand its stability mechanism, an equivalent material simulation experiment for a coalmine with complex geological conditions was carried out in this study. The results show that a "self-stabilization bearing structure" equilibrium model was found after the cutting roof caving when the cut line deviation angle was unequal to zero and the cut height was greater than the mining height, and the caving roof rock was hard without damage. The model showed that its stability was mainly controlled by two key blocks. Furthermore, in order to determine the optimal parameters of the cut height and the cut line deviation angle for the cutting roof of the retaining gateway, an in-depth analysis with theoretical mechanics and mine rock mechanics of the model was performed, and the relationship between the roof balance control force and the cut height and cut line deviation angle was solved. It was found that the selection of the values of the cut height and the cut line deviation angle had to conform to a certain principle that it should not only utilize the support force provided by the coal wall and the contact surface of the two key blocks but also prevent the failure of the coal wall and the contact surface.

AHP기법과 목표계획법을 이용한 신병 군사특기 분류 모형 (A MOS Assignment Model to Enlisted Recruits Using AHP and Goal Programming)

  • 민계료;김해식
    • 한국국방경영분석학회지
    • /
    • 제25권1호
    • /
    • pp.142-159
    • /
    • 1999
  • To assign the soldiers in the adequate positions I military is almost as important as managing officers because they compose the main part of military structure and equipment operators. The current Military Occupational Specialty(MOS) assignment system lacks the capability to optimize the use of recruit's potential. We suggest an MOS assignment method for enlisted recruits using the Analytic Hierarchy Process(AHP) method, this method systematically provides a method of calculation of composite relative weights of decision elements to be considered during MOS assignment and a method of quantification for personal quality of new recruits. The quantified value of personal quality, Mission Performance Capability(MPC), in this study means the mission performance capability when a personnel is assigned to a certain MOS. This paper develops a multiple objectives MOS assignment model for enlisted recruits. It uses MPC of personnels, calculated with AHP method and consensus method, as parameters. The goal constraints are assurance of filling requirement, minimization of the number of unassigned personnel to MOS, capability satisfaction of education facility and support facility, assurance of desired MPC value level for MOS assignment, and maximization of total MPC. The objective function is to terminalization of the negative or positive deviation for the above goal constraints.

  • PDF

복식.실내가구에 나타난 업홀스터리 스타일의 구조적.조형적 특징 (The Structural and Figurative Features of the Upholstery Style in Fashion and Furniture)

  • 이혜원;김민자
    • 복식
    • /
    • 제61권8호
    • /
    • pp.73-84
    • /
    • 2011
  • Upholstery style is the form which bulges a shape by putting fillings in the support and covering them with patterned textile or pile fabric. Modern upholstery style was combined with the various socio-cultural products and artistic styles and expressed in interior furniture and costumes of historical time periods. The style first originated when people built houses for settlement and made furniture to decorate its interior. The characteristics of upholstery style came to be prominent in the Renaissance, Baroque and Rococo times with the development of science and textile industry. The interior furniture represented the ages of the Renaissance, Baroque and Rococo and were made with similar images of the architectural style from those different time periods. Textiles, tapestry, velvet, corduroy, damask, brocade, and the most frequently used velvet are elements that make up the structural and figurative features of the architectural style. The upholstery style of furniture also shows the forms of clothing that represents each of the different periods. This style still continues to be used today. In modern day fashion, the figurative characteristics of the upholstery style that derives from interior furniture and clothing from the different time periods are bulkiness, asymmetry and exoticism. Such figurative characteristics have evolved through the combination of diverse genres but it still maintains similar designs and forms.

의성 탑리리 오층석탑 기단부 전기비저항 탐사 (Resistivity Survey on Stylobate of Five-story Stone Pagoda in Tamni-ri, Uiseong)

  • 오현덕;권문희
    • 지구물리와물리탐사
    • /
    • 제23권4호
    • /
    • pp.253-260
    • /
    • 2020
  • 경상북도 의성군 탑리리 오층석탑은 상부구조가 불안정하고 지대석과 기단부의 구조적 변형이 심각한 상태였다. 탑의 기단부 보수공사를 위해서 기단 내부에 석재가 존재하는지를 파악하여 탑을 안전하게 받치고 있는지를 조사하기 위하여 전기비저항 탐사를 실시하였다. 탑의 기단부는 면석을 모두 제거하여 흙과 깬 돌이 노출된 상태이다. 사용한 전극 배열법은 쌍극자 간격을 다변화시킨 변형된 홑극-쌍극자 배열법 II를 사용하였으며 일반적인 홑극-쌍극자 배열법과 함께 사용하여 비교 분석하였다. 그리고 이 연구에서는 직각측선과 같은 심한 지형기복에 의한 왜곡현상을 포함하는 데이터의 신뢰도 검사를 위하여 축소모형실험을 수행하였다. 탐사결과 의성 탑리리 오층석탑의 기단부는 보강 채움 토 내부에 기초석이 존재하고 탑신의 기둥 직하부에 위치하여 탑을 받치고 있는 것을 확인하였다.