• Title/Summary/Keyword: filling balance

Search Result 77, Processing Time 0.028 seconds

Filling Imbalance in 3 Plate Type Injection Molds with Multi-Cavity (다수 캐비티를 갖는 3매 구성형 사출금형에서의 충전 불균형)

  • 제덕근;정영득
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.752-755
    • /
    • 2003
  • Injection molding is the one of the most important processes for mass production of plastic parts. Usually Injection molds for mass production are constituted to multi-cavity runner system to manufacture the more parts at a time. To uniformly fill to each cavity, multi-cavity molds are designed to geometrically balanced runner system. However. in practice this is not the case. The previous studies by Beaumount at.[2] reported that filling imbalance occurred by thermal unbalance on the mold and viscosity variation of resins and so on. In this study, we conducted experiments in order to know the causes or filling imbalance for 3 plate type mold with 8 cavities. We presented a new so called 4BF mold(4plate Type Balanced Filling Mold) to improve filling balance. We conducted a experimental injection molding to verify a efficiency of the 4BF mold. In the results of the experiment, We could confirmed the possibility of the 4BF mold.

  • PDF

A study on the filling imbalances in hot-runner mold for internal gear based on injection molding (내측 기어 성형용 핫러너 금형에서의 충전불균형에 관한 연구)

  • No, Byung-Soo;Jea, Duck-Gun;Jeong, Yeong-Deug
    • Design & Manufacturing
    • /
    • v.2 no.3
    • /
    • pp.1-5
    • /
    • 2008
  • Plastic parts are molded for the purpose of mass production in injection molding. Therefore designer is usually designing molds that has geometrically balanced hot runner lay-out for filling balance at cavities. Although, mold is manufactured with geometrically balanced runner lay-out, there are actually filling imbalances in cavities. These filling imbalances phenomenon are caused by complicated interaction between melt and mold. In this paper, filling imbalances for internal gear based on injection molding in hot-runner mold were investigated by CAE and injection molding experiences.

  • PDF

Filling Imbalance in 3 Plate Type Injection Molds with Multi-Cavity (다수 캐비티를 갖는 3매 구성 사출금형에서의 충전 불균형)

  • 제덕근;정영득
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.6
    • /
    • pp.117-121
    • /
    • 2004
  • Injection molding is the one of the most important processes for mass production of plastic parts. Usually injection molds for mass production are constituted to multi-cavity runner system to manufacture the more parts at a time. Multi-cavity molds are designed to geometrically balanced runner system to uniformly fill to each cavity. But, when injection molding is performed using a mold with balanced runner system filling imbalances are occurred between the cavity to cavity. The previous studies by Beaumont at. all reported that filling imbalance occurred by thermal unbalance on the mold and viscosity variation of resins and so on. In this study, we conducted experiments in order to know the causes of filling imbalance for 3 plate type mold with 8 cavities. And we exhibited a new so called 4BF mold (4 plate type Balanced Filling Mold) to be possible filling balance. We conducted a experimental injection molding to verify the efficiency of the 4BF mold. In the results of the experiment, we could confirmed the balanced filling possibility of the 4BF mold.

Flow Analysis of Filling Imbalance according to Runner Shapes in Injection Mold (사출금형의 러너시스템 형상에 따른 충전불균형 유동해석 모델)

  • Jang, Min-Kyu;Go, Seung-Woo;Kim, Yeong-Min;Noh, Byeong-Su;Jeong, Yeong-Deug
    • Design & Manufacturing
    • /
    • v.2 no.5
    • /
    • pp.16-20
    • /
    • 2008
  • Almost all injection molds have multi-cavity runner system for mass production, which are designed with geometrically balanced runner system in order to accomplish filling balance between cavity to cavity during processing; However, even though geometrically balanced runner is used, filling imbalances have been observed. In these day, the CAE has been used widely in injection molding. However, CAE with fusion mesh can't indicate such as jetting, flow mark and filling imbalance in multi cavity mold. In this study, we investigated the filling imbalance according to runner shapes by CAE analysis. As a result in CAE, in case of binary branch runner system, filling imbalance was indicated between cavity to cavity, but the flow pattern of each cavity uniformed in unary branch runner system.

  • PDF

The Evaluation on In-Situ Adaptability of Mono-layer Landfill Final Cover System (단층형 매립지 최종복토시스템의 현장 적용성 평가)

  • Yu, Chan;Yun, Sung-Wook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.5
    • /
    • pp.73-80
    • /
    • 2006
  • The mono-layer cover system is composed of soils only as a filling material and various plants are planted on the surface to control the water balance in the cover system. In this paper, the mono-layer cover system was considered as an alternative landfill final cover system and developed a model that could utilize industrial by-product (especially, coal ash & phosphogypsum) as additive filling materials. The mixture of granite soil, coal ash, and phosphogypsum was placed as a cover material in a box constructed with cement. Laboratory tests were carried out to investigate the environmental effect on the utilization of coal ash & phosphogypsum and to determine the mxing ratio of each materials. In the leaching test, all materials showed lower heavy metal concentration than the threshold values of regulation. The optimum mixing ratio of materials which was applied to field model test was determined to soil (4) : coal ash (1) : phosphogypsum (1) on the volume base. Field model tests were continued from February to July, 2004 in the soil box that was constructed with cement block. It was verified that coal ash and phospogypsum mixed with soil was to be safe environmentally and the water balance of mono-layer cover system was reasonable.

A Study on The Optimum Design of Multi-Cavity Molding Parts Using The Runner Balance Algorithm (런너밸런스 알고리즘을 이용한 멀티캐비티 최적성형에 관한 연구)

  • 박균명;김청균
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.11
    • /
    • pp.41-46
    • /
    • 2003
  • The objective of this paper is to present a methodology for automatically balancing multi-cavity injection molds with the aid of flow simulation. After the runner and cavity layout has been designed, the methodology adjusts runner and gate sizes iteratively based on the outputs of flow analysis. This methodology also ensures that the runner sizes in the final design are machinable. To illustrate this methodology, an example is used wherein a 3-cavity mold is modeled and filling of all the cavities at the same time is achieved. Based on the proposed methodology, a multicavity mold with identical cavities is balanced to minimize overall unfilled volume among various cavities at discrete time steps of the molding cycle. The example indicates that the described methodology can be used effectively to balance runner systems for multi-cavity molds.

Investigation of the Filling Unbalance and Dimensional Variations in Multi-Cavity Injection Molded Parts (다수 캐비티의 사출성형품에서 충전의 불균형과 성형품 치수 편차의 교찰)

  • Kang, Min-A;Lyu, Min-Young
    • Polymer(Korea)
    • /
    • v.32 no.6
    • /
    • pp.501-508
    • /
    • 2008
  • Small injection molded articles such as lens and mobile product parts are usually molded in multi-cavity mold. The problem occurring in multi-cavity molding is flow unbalance among the cavities. The flow unbalance affects the dimensions and physical properties of molded articles. First of all, the origin of flow unbalance is geometrical unbalance of the delivery system. However, even the geometry of the delivery system is well balanced, cavity unbalance occurs. This comes from the temperature distributions in the cross-section of runner. Temperature distribution depends upon injection speed because heat generation near runner wall is high at high injection speed. Among the operational conditions, injection speed is the most significant process variable affecting the filling unbalances in multi-cavity injection molding. In this study, experimental study of flow unbalance has been conducted for various injection speeds and materials. Also, the filling unbalances were compared with CAE results. The dimensions and weights of multi-cavity molded parts were examined. The results showed that the filling unbalances vary according to the injection speeds and resins. Subsequently, the unbalanced filling and pressure distribution in the multi-cavity affect the dimensions and physical states of molded parts.

Study on Improving Flow Balance and Clamp Force of Family Mold for Refrigerator Shelf (냉장고용 선반 패밀리금형의 유동 밸런스와 클램프힘 개선에 관한 연구)

  • Park, Je-Hong;Yoon, Kyeong-Won;Ko, Chang-Oh;Seo, Sang-Won;Kim, Su-Jin
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.6
    • /
    • pp.561-568
    • /
    • 2014
  • Injection molding industries realize the necessity of developing family molds to improve competitiveness. One of the primary causes of manufacturing defective products is the imbalance of flow in a family mold. In this study, the family mold of a shelf for refrigerators is analyzed by using CAE software. First, the flow balance, clamping force, and injection pressure are analyzed for different gate diameters of two cavities. Second, the flow balance, clamping force, and injection pressure are improved when the two gate valves are open at different times. Finally, the results of filling analysis are compared with the test injection product.