• Title/Summary/Keyword: fillet welding

Search Result 258, Processing Time 0.024 seconds

A Study on Mechanical Properties of Fillet Weldment in Pipeline Repair Welding Using Sleeve (슬리브덮개를 이용한 배관 보수용접시 필릿용접부의 기계적특성에 관한 연구)

  • 김영표;김형식;김우식;홍성호
    • Journal of Welding and Joining
    • /
    • v.14 no.5
    • /
    • pp.49-58
    • /
    • 1996
  • In Korea Gas Corporation, as one of the pipeline repairing methods, damaged pipelines are sometimes treated with a temporally employment of split sleeve. On conducting the repair process, circumferential fillet and longitudinal groove welding usually must be included. For the case of groove welding, a considerable amount of R&D have been carried out related to property changes, while few study on the property change in fillet welding has been conducted. In this paper, so as to confirm the specification of fillet welding in terms of safety and reliability, properties changed by fillet welding were investigated for two welding processes. Qualifying tests such as reviewing macrostructure and nick-break tests were performed according to API 1104 and ASME section IX. In addition, tensile properties and hardness were evaluated according to KS B0841 and BS 4515. The fillet weld prepared by the qualified procedure showed melting depth of 0.8∼1.3mm and heat affected zone of 2.8∼3.4mm length. No crack and lack of penetration were observed. And the results of hardness and nick-break tests satisfied code requirements. The area crossed by fillet and groove welding line was found to have minimal tensile strength.

  • PDF

Characteristics of Fatigue Failure according to Thickness of Material and Number of Passes in Cruciform Fillet Weld Zone (십자형 필릿 용접부에서 재료 두께 및 용접 층수에 따른 피로파괴 특성)

  • Lee, Yong-Bok
    • Journal of Welding and Joining
    • /
    • v.28 no.6
    • /
    • pp.45-50
    • /
    • 2010
  • Most of joining processes for machine and steel structure are performed by butt and fillet welding. The mechanical properties and fatigue strength of their welding zone can be effected largely by the differential of generated heat and changes of grain size according to thickness of material and number of passes in welding process. In this study, it was investigated about characteristics of fatigue failure according to thickness of material and number of passes in cruciform fillet weld zone as the basic study for safe and economic design of welding structures. Fracture modes in cruciform fillet weld zone are classified into toe failure and root failure according to non-penetrated depth. It can be accomplished economic design of welding structures considering fatigue strength when the penetrated depth in fillet weld zone is controled properly.

A Study on Seam Tracking for Fillet Welding using High Speed Rotating Arc Sensor (고속회전 아크센서를 이용한 필렛 용접선 추적에 관한 연구)

  • Lee, Won-Ki;Lee, Gun-You;Oh, Myung-Seok;Kim, Sang-Bong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.917-922
    • /
    • 2003
  • In this paper, a high speed rotating arc sensor for automatic fillet welding is introduced. In order to track the welding seam, The high speed rotating arc sensor is used. The welding tip of a high speed rotating arc sensor rotates about 3000 rpm using DC motor. The rotating torch is driven by gear between welding torch body and wire guide. The welding current is measured by using the current sensor and rot at ing position sensor. To realize the welding seam tracking algorithm with accuracy, a software filter algorithm using the moving average method is applied to the measured welding current in the microprocessor. The welding mobile robot with two wheels and two sliders is developed for fillet welding. The welding mobile robot can control its traveling direction and turn itself around the corner. The effectiveness is proven through the experimental results conducted with varied fillet tracking patterns.

  • PDF

A Study on Horizontal Fillet Welding by Using Rotating Arc (II) - Development of High-speed Welding Process - (회전아크를 이용한 수평필릿 용접에 관한 연구 (II) - 고속용접공정의 개발 -)

  • 김철희;나석주;이현철;김세환
    • Journal of Welding and Joining
    • /
    • v.21 no.3
    • /
    • pp.46-50
    • /
    • 2003
  • The horizontal fillet joint is one of the most important weld joints in the shipbuilding industry. High-speed rotating arc welding, which can increase the leg length, is an effective way to improve the weld productivity and quality for the horizontal fillet welding. Based on the Taguchi method, the effects of welding parameters on bead characteristics - leg length, asymmetry, undercut, overlap - are investigated fur high-speed welding process. As a result, the adequate welding parameters are selected for the required leg length, symmetric bead and no undercut. Besides, considerably consistent leg length is observed for the horizontal fillet welding with gap variation up to 3mm.

A Study on the Fatigue Crack Growth Behaviour for the Welded Configuration in Pressure Vessel Stiffener (압력용기 보강재의 용접 형태에 따른 피로균열성장 거동에 관한 연구)

  • 차용훈;김하식;성백섭
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.3
    • /
    • pp.1-6
    • /
    • 2001
  • The study is to investigate the influence on the fatigue crack growth behaviors for the welded configuration in pressure vessel stiffener. In order to perform this goal, the automatic welded specimens were prepared. The material is ASTM A516 grade 60 steel used in pressure vessel mainly. In skip welding of pad-on-plate, continuous fillet welding and PWHT specimen, fatigue crack is generally initiated at the starting and end old toe zone, and ruptured at the starting old toe zone. The fatigue life of pad-on-plate of the continuous fillet welding specimen is larger than that of pad-on-plate skip fillet welding specimen about 85% under low load, about 20% under high load and less than that of two-pad continuous fillet welding specimen about 85%. In da/dN-$\Delta$K curve under low load, skip fillet welding specimen of pad-on-plate showed retardation on the initial crack, and the fatigue crack growth rate at the low region of $\Delta$K greater specimen E($3.8 {\times} 10^{-6}mm/cycle$). And the fatigue life of welding specimen was smaller than that of PWHT specimen.

  • PDF

A Study on Stree Analysis and Bending Fatigue Strength of One Side Fillet Welded T-joint (T형 평면용접이음재의 응력해석과 굽힘피로강도에 관한 연구)

  • Gang, Seong-Won;Lee, Tae-Hun;Jeon, Jae-Mok;Kim, Chung-Hui
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.2 s.32
    • /
    • pp.51-57
    • /
    • 1999
  • In this study, one side fillet welded T-joint, used in box type girder and other welding structure, was investigated by stress analysis and bending fatigue test without edge preparation, with variation of joint shape. The purpose of this study is to give the welding condiltion and design standard on manufacturing one side fillet welded T-joint. As a result, the following conclusions were obtained. 1) In one side fillet welded T-joint, the larger the leg length and the penetration depth, the greater the bending fatigue strength because reduction of stress and strain on toe and root. The increase of the longitudinal leg length rather than vertical leg length contributed to the increase in bending fatigue strength. 2) In one side fillet welded T-joint without edge preparation, both general manual welding and general automatic welding were carried out with same condition. In this case, automatic welding showed deeper penetration and more increased longitudinal leg length than manual welding, so that automatic welding offers greater bending fatigue strength. 3) For one side fillet welded T-joint without edge preparation with automatic welding, the ratio(h/t) of the leg length(h) and the main plate thickness(t) in which toe crake can occur was 1.0 over.

  • PDF

A Study on the Buckling in Fillet Welds of Sheets (박판 필릿용접구조물의 좌굴변형에 관한 연구)

  • Chu, Hwan-Su;Cho, Sang-Myung
    • Journal of Welding and Joining
    • /
    • v.27 no.3
    • /
    • pp.60-66
    • /
    • 2009
  • The structures distorted by welding have to be corrected. Since the correcting work needs a lot of costs and time, it is very important to minimize the buckling distortion due to welding of thin plate structure. Therefore the aim of this study is to investigate the effect of single bead on plate welding and fillet welding on the buckling distortion. In the single bead on plate welding, it was found that the welding speed and welding sequence were the most dominant factors on distortion. In the fillet welding, there were four typical buckling modes observed, and the welding sequence was the most influential factor on the buckling distortion. However typical distortion measuring method is not considered for the distortion correcting process costs of each buckling modes, therefore, in this study, the measuring method is developed to classify the buckling modes for torsion of specimen and buckling distortion depend on nodal point for the bead on plate welding specimen and fillet welds.

Simplified welding distortion analysis for fillet welding using composite shell elements

  • Kim, Mingyu;Kang, Minseok;Chung, Hyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.3
    • /
    • pp.452-465
    • /
    • 2015
  • This paper presents the simplified welding distortion analysis method to predict the welding deformation of both plate and stiffener in fillet welds. Currently, the methods based on equivalent thermal strain like Strain as Direct Boundary (SDB) has been widely used due to effective prediction of welding deformation. Regarding the fillet welding, however, those methods cannot represent deformation of both members at once since the temperature degree of freedom is shared at the intersection nodes in both members. In this paper, we propose new approach to simulate deformation of both members. The method can simulate fillet weld deformations by employing composite shell element and using different thermal expansion coefficients according to thickness direction with fixed temperature at intersection nodes. For verification purpose, we compare of result from experiments, 3D thermo elastic plastic analysis, SDB method and proposed method. Compared of experiments results, the proposed method can effectively predict welding deformation for fillet welds.

A Study on Horizontal Fillet Welding by Using Rotating Arc (I) - Relation Between Welding Parameters and Weld Bead Shape (회전아크를 이용한 수평필릿 용접에 관한 연구 (I) - 공정변수와 용접비드형상의 관계 -)

  • 김철희;나석주
    • Journal of Welding and Joining
    • /
    • v.21 no.3
    • /
    • pp.40-45
    • /
    • 2003
  • The high-speed rotating arc process forms a flat bead surface with decreased penetration depth because the molten droplets are deflected by centrifugal force. Therefore the rotating arc welding for horizontal fillet welding increases the leg length with the increase of rotation frequency and prevents the deflection of weld bead and overlap. In this study, the relationship between the welding parameters and the weld bead shape - leg length and undercut - are investigated experimentally. Consequently, the weld quality could be improved by rotating arc welding, and sound weld bead was achieved when applied to horizontal fillet welding with 4mm gap by avoiding the undercut which is inevitable for the conventional GMA welding methods.

A Study on Bending Fatigue Strength of One Side Fillet Welded T-Joint by SM 490A steel (Sm 490A강으로 제작된 T형 편면용접이음재의 굽힘피로강동에 관한 연구)

  • 엄동석;강성원;이태훈;이해우;조수형
    • Journal of Welding and Joining
    • /
    • v.16 no.5
    • /
    • pp.134-141
    • /
    • 1998
  • In this study, a fillet size for bending fatigue strength of one side fillet welded T-joint, used in box type girder and other welding structure, was investigated by bending fatigue test with or without edge preparation and burn through, with variation of joint shape. As a result, the following conclusions were obtained. (1) In one side fillet welded T-joint, the larger the leg length, the greater the bending fatigue strength. The increase in bending fatigue strength. (2) One side filet welded T-joint with edge preparation showed higher bending fatigue strength than that with twofold-large leg length and without edge preparation. (3) In one side fillet welded T-joint without edge preparation, both manual welding and automatic welding were carried out with same condition. In this case, automatic welding shoed deeper penetration and more increased horizontal leg length than manual welding, so that automatic welding offers grater bending fatigue strength. (4) For one side fillet welded T-joint without edge preparation, the ratio(h/t) of the leg length (h) and the main plate thickness (t) in which toe crack can occur was 1.2 over. (5) In one side fillet welded T-joint with edge preparation, the burn through led to reduced bending fatigue strength. However, this bending fatigue strength was higher than that of one side fillet welded T-joint without edge preparation and with a larger leg length.

  • PDF