• Title/Summary/Keyword: filler content ratio

Search Result 85, Processing Time 0.025 seconds

Workability and Strength Properties of MMA-Modified Polyester Polymer Concrete (MMA 개질 폴리머 콘크리트의 작업성 및 역학적 성질)

  • 연규석;주명기;유근우;최종윤;김남길
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.769-774
    • /
    • 2002
  • In this study, methyl methacrylate (MMA)- modified polyester polymer concrete, in which the MMA was added to the unsaturated polyester resin, was developed for improving the early-age strength and the workability of the conventional polymer concrete, binder of which was the unsaturated polyester resin. Then the fundamental properties of the polymer concrete such as workability and strength were surveyed. The experimental results showed that the workability was remarkably improved as the MMA contents increased, and the filler-binder ratio was turned out to be important factor for the workability. Slump prediction equation was derived by the regression analysis based on MMA content and filler-binder ratio. Furthermore, early-age strength was greater when the MMA content were increased in the range of 20-40 % but the strength rather showed a tendency of decrease when the MMA content was 50 %.

  • PDF

A Study on the Partial Discharge Resistance Characteristic for Optimizing the Mixing Ratio of Heterogeneous Inorganic Insulated Materials for Environmentally Friendly GIS Spacer (친환경 GIS Spacer용, 이종 무기물 절연소재의 혼합비 최적화를 위한 부분방전 저항성 특성 연구)

  • Park, Jae-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.9
    • /
    • pp.1189-1196
    • /
    • 2018
  • 7 type composites (40, 45, 50, 55, 60, 65, and 70 wt.%)were prepared for the environmentally friendly GIS Spacer. Five kinds of samples were prepared for optimization of the filler content ratio (MS: MA = 1: 9, 3: 7, 5: 5, 7: 3, 9: 1) of epoxy / microsilica and microalumina. As a result of evaluation of the partial discharge resistance characteristic, surface erosion is generally slowed down as the fill amount of micro silica is increased. Also, partial discharge resistance characteristics for the development of insulating materials with optimal mixing ratios of heterologous showed a higher partial resistance of discharge and a decrease in erosion, as the filler content ratio of micro silica was larger. In the future, various researches such as electrical, mechanical, and thermal studies will be needed to develop insulating materials that can commercialize power devices in environmentally friendly insulating gas.

Wear Particulate Matters and Physical Properties of ENR/BR Tread Compounds with Different Ratio of Silica and Carbon Black Binary Filler Systems

  • Ryu, Gyeongchan;Kim, Donghyuk;Song, Sanghoon;Lee, Hyun Hee;Ha, Jin Uk;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.56 no.4
    • /
    • pp.234-242
    • /
    • 2021
  • The demand for truck bus radial (TBR) tires with enhanced fuel efficiency and wear resistance have grown in recent years. In addition, as the issue of particulate matter and air pollution increases, efforts are being made to reduce the generation of particulate matter. In this study, the properties of epoxidized natural rubber (ENR) containing a silica-friendly functional group were evaluated by considering it as a base rubber and varying the silica ratio in this binary filler system. The results showed that the wear resistance of the NR/BR blend compound decreased as the silica ratio increased. In contrast, the ENR/BR blend compound exhibited an increase in wear resistance as the silica ratio was increased. In particular, the ENR-50/BR blend compound showed the best wear resistance due to the presence of several epoxide groups. Furthermore, we observed that for tan 𝛿 at 60℃, higher epoxide content resulted in the higher Tg of the rubber, indicating a higher tan 𝛿 at 60℃. On the other hand, it was confirmed that increasing the silica ratio decreased the value of tan 𝛿 at 60℃ in all compounds. In addition, we measured the amount of wear particulate matters generated from the compound wear. These measurements confirmed that in the binary filler system, regardless of the filler type, the quantity of the generated wear particulate matters as the filler-rubber interaction increased. In conclusion, the silica filled ENR/BR blend compound exhibited the lowest generation of wear particulate matters.

A Study on the Heat Resistance of Light-Weight Polymer Concrete Composites (경량 폴리머 콘크리트 복합체의 내열성능에 관한 연구)

  • Jo, Young-Kug
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.6
    • /
    • pp.131-137
    • /
    • 2008
  • In recent years, the light-weight aggregate has widely been used to reduce the weight of construction structures, and to achieve the thermal insulation of building structures. The purpose of this study is to evaluate the heat resistance of polymer concrete composites with light-weight aggregate made by binders as resin and cement with polymer dispersion. The light-weight polymer concrete composites are prepared with various conditions such as binder content, filler content, void-filling ratio, light-weight aggregate content and polymer-cement ratio, and tested for heat resistant test, and measured the weight reducing ratio, strengths and exhaustion content of gas such as CO, NO and $SO_2$. From the test results, the weight reducing ratio of light weight polymer concrete using UP binder after heat resistance test increase with an increase in the UP content irrespective of the filler content. The weight reducing ratio of polymer cement concrete is considerably smaller than that of UP concrete. In general, the strengths after heat resistance of polymer concrete composites are reduced about 40 to 65% compared with those before test. The exhausted quantity of CO, NO and $SO_2$ gases in polymer concrete composites is less than EPS(Expanded poly styrene). From the this study, it is confirmed that the many types gases discharge according to binder type of polymer concrete composites, its amount is controlled by selection of the binder type and mix proportions.

Production of High Loaded Paper by Dual Flow Additions of Fillers (I) -Effects of Filler Addition at Thick Stock on Paper Properties and Papermaking Process - (충전제 투입위치 이원화에 의한 고충전지 제조 (I) - 고농도 지료 충전이 종이물성과 공정에 미치는 영향 -)

  • Cho, Byoung-Uk;Kim, Hyuk-Jung;Won, Jong-Myoung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.4
    • /
    • pp.23-30
    • /
    • 2011
  • Fillers have been used for papermaking in order to enhance the optical properties, to improve sheet formation, printability and dimensional stability and to reduce the furnish cost. However, filler particles in paper interfere with fiber-fiber bonding, resulting in decreased paper strength. In order to increase filler content in paper without sacrificing too much paper strength, dual addition technology of fillers was investigated. As a first step, the effects of thick stock addition of fillers on paper properties and papermaking process were elucidated. It was shown that thick stock addition of fillers could increase paper strength at a given filler content. No significant adverse effects on formation, drainage and filler retention were observed. However, bulk of paper was reduced with thick stock addition of fillers, which shall be resolved with regulating other factors such as the mixing ratio of pulps and type of fillers.

Effects of Filler Types and Content on Shrinkage Behavior of Polypropylene Composites

  • Jung, Chun-Sik;Hwang, Seok-Ho
    • Elastomers and Composites
    • /
    • v.57 no.3
    • /
    • pp.107-113
    • /
    • 2022
  • The effects of fillers [talc, calcium carbonate, glass fiber, and EBR (ethylene-butene rubber)] on the shrinkage and mechanical properties of injection-molded polypropylene composites were investigated. The shrinkage correlated with the shape of the filler particles: at the same amount added, glass fibers with a large aspect ratio had the greatest effect on the shrinkage of polypropylene composites, followed by flake-shaped talc and granular calcium carbonate. It was confirmed that the addition of EBR rubber as an impact strength modifier reduced shrinkage proportionally to the added content. In addition, the addition of glass fiber resulted in the greatest increases in tensile and flexural strengths.

Effect of Diamond Particle Ratio on the Microstructure and Thermal Shock Property of HPHT Sintered Polycrystalline Diamond Compact (PDC) (초 고온·고압 소결 공정으로 제조된 다결정 다이아몬드 컴팩트(PDC)의 미세조직 및 열충격 특성에 미치는 다이아몬드 입자 비율의 영향)

  • Kim, Ji-Won;Park, Hee-Sub;Cho, Jin-Hyeon;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.22 no.2
    • /
    • pp.111-115
    • /
    • 2015
  • This study investigates the microstructure and thermal shock properties of polycrystalline diamond compact (PDC) produced by the high-temperature, high-pressure (HPHT) process. The diamond used for the investigation features a $12{\sim}22{\mu}m$- and $8{\sim}16{\mu}m$-sized main particles, and $1{\sim}2{\mu}m$-sized filler particles. The filler particle ratio is adjusted up to 5~31% to produce a mixed particle, and then the tap density is measured. The measurement finds that as the filler particle ratio increases, the tap density value continuously increases, but at 23% or greater, it reduces by a small margin. The mixed particle described above undergoes an HPHT sintering process. Observation of PDC microstructures reveals that the filler particle ratio with high tap density value increases direct bonding among diamond particles, Co distribution becomes even, and the Co and W fraction also decreases. The produced PDC undergoes thermal shock tests with two temperature conditions of 820 and 830, and the results reveals that PDC with smaller filler particle ratio and low tap density value easily produces cracks, while PDC with high tap density value that contributes in increased direct bonding along with the higher diamond content results in improved thermal shock properties.

Characteristics of Asphalt Concrete Utilizing Coal Ash Based Filler (석탄회 기반 채움재를 활용한 아스팔트 콘크리트의 공학적 특성)

  • Kim, Young-Wook;Park, Keun-Bae;Woo, Yang-Yi;Moon, Bo-Kyung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.3
    • /
    • pp.305-312
    • /
    • 2017
  • This paper presents a laboratory investigation into the effects of fillers using industrial by-product such as coal ash, IGCC slag on properties of hot-mixed asphalt concrete variation with filler content. For comparison, existing mixture with lime and dust have also been considered. Marshall and flow test has been considered for the purpose of mix design as well as evaluation of mixture. Other performance tests such as indirect tensile strength test, tensile strength ratio(moisture susceptibility), dynamic stability have also been carried out variation with filler content. It is observed that the mixes with industrial by-product exhibit conform with quality standard. Therefore, it has been recommended to utilize industrial by-product based on fly ash wherever available, not only reducing the produce cost but also partly solve the industrial by-product utilization and disposal problem.

A Comparison Study on Reinforcement Behaviors of Functional Fillers in Nitrile Rubber Composites

  • Seong, Yoonjae;Lee, Harim;Kim, Seonhong;Yun, Chang Hyun;Park, Changsin;Nah, Changwoon;Lee, Gi-Bbeum
    • Elastomers and Composites
    • /
    • v.55 no.4
    • /
    • pp.306-313
    • /
    • 2020
  • To investigate the reinforcing effects of functional fillers in nitrile rubber (NBR) materials, high-structure carbon black (HS45), coated calcium carbonate (C-CaCO3), silica (200MP), and multi-walled carbon nanotubes (MWCNTs) were used as functional filler, and carbon black (SRF) as a common filler were used for oil-resistant rubber. The curing and mechanical properties of HS45-, 200MP-, and MWCNT-filled NBR compounds were improved compared to those of the SRF-filled NBR compound. The reinforcing effect also increased with a decrease in the particle size of the fillers. The C-CaCO3-filled NBR compound exhibited no reinforcing effect with increasing filler concentration because of their large primary particle size (2 ㎛). The reinforcing behavior based on 100% modulus of the functional filler based NBR compounds was compared by using several predictive equation models. The reinforcing behavior of the C-CaCO3-filled NBR compound was in accordance with the Smallwood-Einstein equation whereas the 200MP- and MWCNT-filled NBR compounds fitted well with the modified Guth-Gold (m-Guth-Gold) equation. The SRF- and HS45-filled NBR compounds exhibited reinforcing behavior in accordance with the Guth-Gold and m-Guth-Gold equations, respectively, at a low filler content. However, the values of reinforcement parameter (100Mf/100Mu) of the SRF- and HS45-filled NBR compounds were higher than those determined by the predictive equation model at a high filler content. Because the chains of SRF composed of spherical filler particles are similarly changed to rod-like filler particles embedded in a rubber matrix and the reinforcement parameter rapidly increased with a high content of HS45, the higher-structured filler. The reinforcing effectiveness of the functional fillers was numerically evaluated on the basis of the effectiveness index (��SRF/��f) determined by the ratio of the volume fraction of the functional filler (��f) to that of the SRF filler (��SRF) at three unit of reinforcing parameter (100Mf/100Mu). On the basis of their effectiveness index, MWCNT-, 200MP-, and HS45-filled compounds showed higher reinforcing effectiveness of 420%, 70%, and 20% than that of SRF-filled compound, respectively whereas C-CaCO3-filled compound exhibited lower reinforcing effectiveness of -50% than that of SRF-filled compound.

Properties of Cold Recycled Asphalt Mixtures with Alkali-activated Filler according to Wasted Asphalt Aggregate Content (폐아스콘 순환골재 혼입율에 따른 알칼리활성화 채움재 상온 재생 아스팔트 혼합물의 특성)

  • Lee, Min-Hi;Kang, Suk-Pyo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.3
    • /
    • pp.199-206
    • /
    • 2018
  • Due to the advantages of less raw materials and fossil fuel consumption, lower carbon footprint, and the capability of pavement performance improvement, the recycling technology of asphalt is developed and applied for road rehabilitation and construction in the western countries over the past two decades. Cold recycled asphalt mixtures are bituminous materials normally made by mixing recycled aggregate from wasted asphalt with an asphalt emulsion and water at room temperature. This paper aims at investigating the properties of cold recycled asphalt mixture with alkali-activated filler according to wasted asphalt aggregate content. As a result, as the content of wasted asphalt aggregate increased, the marshall stability of cold recycled asphalt mixture decreased and void ratio increased. Also, grading curves for cold recycled asphalt mixture as specified in GR criteria were satisfied in all aggregate mixing conditions regardless of the wasted asphalt aggregate content.