• Title/Summary/Keyword: filled rubber

Search Result 236, Processing Time 0.021 seconds

Temperature Effect on Tensile Strength of Filled Natural Rubber Vulcanizates (가황 천연고무의 인장강도에 미치는 온도의 영향)

  • Ko, Young-Chon;Park, Byung-Ho
    • Elastomers and Composites
    • /
    • v.36 no.4
    • /
    • pp.255-261
    • /
    • 2001
  • This study was related with the effect of elevated temperature on the tensile strength of edge-cut samples. There was a different tensile strength behavior of uncut samples and pre-cut samples under different test temperatures. Tensile strength of uncut sample decreases with increasing test temperature. When pro-cut size(C) is larger than critical cut size($C_{cr}$), tensile strength or pre-cut specimen at $80^{\circ}C$ is higher than that of pre-cut specimen at room temperature (RT). Test specimens under $80^{\circ}C$ condition exhibited more secondary cracks at the crack tip region compared to room temperature conditions. However, secondary cracks of pre-cut specimens are not clearly developed at $110^{\circ}C$. Differences in tensile strength induced by different test temperature seem to be responsible for the strain-induced crystallization and micro-cracking patterns.

  • PDF

Impact fracture behavior on particle volume fraction of nano silica composite materials (입자 함유율의 변화에 따른 나노 실리카 복합재료의 충격파괴거동)

  • LEE, Jung-Kyu;KOH, Sung Wi
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.51 no.3
    • /
    • pp.454-460
    • /
    • 2015
  • The present study is undertaken to evaluate the effect of volume fraction on the results of Charpy impact test for the rubber matrix filled with nano sized silica particles composites. The Charpy impact tests are conducted in the temperature range $0^{\circ}C$ and $-10^{\circ}C$. The range of volume fraction of silica particles tested are between 11% to 25%. The critical energy release rate $G_{IC}$ of the rubber matrix composites filled with nano sized silica particles is affected by silica volume fraction and it is shown that the value of $G_{IC}$ decreases as volume fraction increases. In regions close to the initial crack tip, fracture processes such as matrix deformation, silica particle debonding and delamination, and/or pull out between particles and matrix which is ascertained by SEM photographs of Charpy impact fracture surfaces.

Impact behavior on temperature effect of nano composite materials (온도변화에 따른 나노 복합재료의 충격거동)

  • KIM, Hyung-Jin;LEE, Jung-Kyu;KOH, Sung Wi
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.51 no.4
    • /
    • pp.561-566
    • /
    • 2015
  • In this study, the effect of temperature effect of the rubber matrix filled with nano sized silica particles composites with silica volume fraction of 19-25% was investigated by the Charpy impact test. The Charpy impact test was conducted in the temperature range from $-40^{\circ}C$ to $0^{\circ}C$. The critical energy release rate GIC of the rubber matrix composites filled with nano sized silica particles was considerably affected by temperature and it was shown that the maximum value was appeared at higher temperature between temperature tested and it was shown that the value of GIC increases as temperature tested increases. The major fracture mechanisms were matrix deformation, silica particle debonding and delamination, microcrack between particles and matrix, and/or pull out between particles and matrix which is ascertained by SEM photographs of Charpy impact surfaces fracture.

Improvement of Mechanical Interfacial Properties of Silica/Rubber Composites by Silane Coupling Agent Treatment (실란 커플링제를 이용한 실리카/고무 복합재료의 기계적 계면 물성의 향상)

  • Park, Soo-Jin;Cho, Ki-Sook;Lee, Jae-Rock
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.121-124
    • /
    • 2001
  • Surface-modified silica holds considerable promise in the development of advanced materials for good mechanical properties and stability. In this work, the surface and mechanical interfacial properties of silicas treated with silane coupling agents, such as Y-methacryloxy propyl trimethoxy silane (MPS). Y-glycidoxy propyl trimethoxy silane (GPS), and Y-mercapto propyl trimethoxy silane (MCPS), are investigated. The effect of silane surface treatments of silica on the surface properties and surface energetics are studied in terms of surface functional values and contact angle measurements. And their mechanical interfacial properties of the silica/rubber composites are studied by the composite tearing energy ($G_{IIIC}$). As a result. the mechanical interfacial properties are improved in the case of silane-treated composites compared with untreated one. It reveals that the functional groups on silica surface by silane surface treatments play an important role in improving the degree of adhesion at interfaces in a silica-filled rubber system.

  • PDF

Effects of Carbon Black on the Fatigue Life, Critical J-Value and Fracture Morphology and a New Estimated Equation for Natural Rubber

  • Kim, Jae-Hoon;Jeong, Hyun-Yong
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.915-923
    • /
    • 2004
  • This study investigated the fatigue lives and mechanical properties of the carbon black filled natural rubber for the vibration-proof parts of the railway vehicle and automobile. The carbon blacks were one of the sources of crack nucleation and crack propagation in the rubber matrix, like the cementite and the maganese sulfide in iron matrix. Different kinds of carbon blacks resulted in different fatigue lives, critical J-values, and fracture morphologies. It was noticed that the critical J-value remained almost the same regardless of the length of a pre-crack. In addition, different kinds of carbon blacks generated different fracture morphologies, and microscopic and macroscopic roughnesses. The critical J-value has linear relations to the roughness, and it seemed related to the size distribution of carbon black particles. By reviewing all the experi-mental data, we found the factors that were related to the fatigue lives, and the logarithmic value of the fatigue life could be linearly expressed by the combination of the critical J-value and the macroscopic roughness. We also proposed a new estimative equation of fatigue life.

A Study on the Dielectric Properties of Silicone Rubber Filled with Silica (실리카 충진된 실리콘 고무의 유전 특성에 관한 연구)

  • Lee, Sung Ill
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.11
    • /
    • pp.810-815
    • /
    • 2013
  • In this study, the capacitance and dielectric loss tangent of the silicone rubber which is combined with filler (30 phr~50 phr) have been measured on the range of 100 Hz~100 kHz and $30{\sim}170^{\circ}C$. It was found that when the frequency is 0.1 kHz~100 kHz and the silicone rubber is combined with 30 phr to 50 phr of filler, the capacitance of silicone rubber has increased by about 28.6 pF to 33 pF in 30 phr of filler, about 20 pF to 46.1 pF in 40 phr of filler and about 36.4 pF to 44 pF in 50 phr of filler. It seems that the volume of dielectric loss has gradually increased due to the temperature rise and the rotating of dipole in electric field through the electric dipole generated by the Si-O group which is induced by adding of filler, or the carbonyl group which is caused by oxidation. It seems that the dielectric dispersion in 0.1 kHz is caused by molecular motion of Siloxane group in main chain, and the dielectric dispersion in 10 kHz is caused by molecular motion of Methyl group in side chain.

Effects of Silane Concentration on the Silica-Silica Interaction Parameter (αF) of the Silica / Natural Rubber Compound (실란농도가 실리카 / 천연고무 복합소재의 실리카 입자간 상호 관계 계수 (αF)에 미치는 영향의 비교)

  • Kim, Sung-Min;Jang, Mi-Kyeong;Choi, Chang-Yong;Nah, Jae-Woon;Kim, Kwang-Jea
    • Elastomers and Composites
    • /
    • v.47 no.1
    • /
    • pp.23-29
    • /
    • 2012
  • The silica-silica interaction parameter (${\alpha}_F$) of the silane treated silica filled natural rubber (NR) compound was investigated. As silane (TESPT) concentration increased from 2 to 12% (2, 4, 6, 8, 10, 12%), the ${\alpha}_F$ value increased at the same silica concentration (10, 20, 30, and 40 phr). It seemed the sulfur atoms in TESPT acted as a crosslinking agent in the compound. As silica concentration increased from 10 to 40 phr, the ${\alpha}_F$ value increased at the same silane concentration due to increased silica-silica interaction.

Physical Properties of Epoxy Resin Filled with Surface-treated Silica : II. Properties of Cured Epoxy Resin (표면처리 실리카를 충전한 에폭시 수지계의 물성에 관한 연구 : II. 에폭시 수지 경화물의 물성)

  • Hong, Suk-Pyo;Choi, Sang-Goo
    • Applied Chemistry for Engineering
    • /
    • v.1 no.2
    • /
    • pp.232-239
    • /
    • 1990
  • ${\gamma}$-Glycidoxy propyl trimethoxy slilane, CTBN rubber(carboxyl terminated butadiene acrylonitrile rubber) and GMA(glycidyl methacrylate) were reacted with the surface of silica one by one in existence of TEA(triethylamine) or BPO(benzoyl peroxide). The amount of reactant was 2.5~5.8% of treated silica weight. The treated silica was mixed with epoxy resin and MTHPA(methyltetrahydrophthalic anhydride) in the range of 0~60% (wt. %) of total component. The flexural and thermal properties were tested for cured products. In filler content 35~55%, the using of silica treated with silane/rubber or silane/rubber/vinyl represented 25% higher flexural strength, 5% lower flexural modulus and 13% higher than mixing liquid rubber 3% with epoxy resin containing untreated silica.

  • PDF

Functionalized Emulsion Styrene-Butadiene Rubber Containing Diethylaminoethyl Methacrylate for Silica Filled Compounds

  • Park, Jinwoo;Kim, Kihyun;Lim, Seok-Hwan;Hong, Youngkun;Paik, Hyun-jong;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.50 no.2
    • /
    • pp.110-118
    • /
    • 2015
  • In this study, diethylaminoethyl methacrylate-styrene-butadiene terpolymer (DEAEMA-SBR), in which diethylaminoethyl methacrylate (DEAEMA) was introduced to the SBR molecule as a third monomer, was synthesized by cold emulsion polymerization. It is expected that amine group introduced to a rubber molecule would improve dispersion of silica by the formation of hydrogen bond (or ionic coupling) between the amine group and silanol groups of silica surface. The chemical structure of DEAEMA-SBR was analyzed using proton nuclear magnetic resonance spectroscopy (H-NMR), Fourier transform infrared spectroscopy (FTIR), gel permeation chromatography (GPC) and differential scanning calorimetry (DSC). Then, various properties of DEAEMA-SBR/silica composite such as crosslink density, bound rubber content, abrasion resistance, and mechanical properties were evaluated. As a result, bound rubber content and crosslink density of DEAEMA-SBR/silica compound were higher than those of the SBR 1721 composite. Abrasion resistance and moduli at 300% elongation of the DEAEMA-SBR/silica composite were better than those of SBR 1721 composite due to the high bound rubber content and crosslink density. These results are attributed to high affinity between DEAEMA-SBR and silica. The proposed study suggests that DEAEMA-SBR can help to improve mechanical properties and abrasion resistance of the tire tread part.

Crack and Cutting Resistance Properties of Natural Rubber(NR) Compounds with Silica/Carbon Black Dual Phase Filler (Silica/Carbon Black이 충전된 NR 가황물의 내Crack 및 내Cutting 특성)

  • Son, Woo-Jung;Cho, Ur-Ryung;Kim, Won-Ho
    • Elastomers and Composites
    • /
    • v.37 no.2
    • /
    • pp.86-98
    • /
    • 2002
  • The application of silica/carbon black dual phase fillers to natural rubber(NR) compound was investigated. When the amounts of filler content were restricted to 60phr, the optimum ratio of dual phase fillers were 25phr/35phr of silica/carbon black. It was found that these new fillers give better overall performance in comparison with carbon black in tear strength, crack resistance, and cutting resistance. Also the thermal degradation resistance of NR vulcanizates which were filled with dual phase fillers was better than that of the carbon black. Dual phase fillers filled NR vulcanizates showed better viscoelastic properties, like tan${\delta}$, for the wet skid resistance and rolling resistance of motor vehicle tires.