• Title/Summary/Keyword: filamentous fungus

Search Result 86, Processing Time 0.03 seconds

개에서 분리한 진균의 동정과 PCR을 이용한 진단 (Identification of Fungus from Dog and Diagnosis using PCR)

  • 장화석;문영찬;이상원;김휘율;김태종
    • 한국임상수의학회지
    • /
    • 제21권1호
    • /
    • pp.35-44
    • /
    • 2004
  • This study was performed to examine the mycological features of canine skin. A total of 50 dogs with skin lesions were examined for dermatology from October, 2000 to April, 2001. The isolation rates of dermatophytes, yeast, filamentous fungi and superficial fungi were 36.4%, 13.5%, 35.3% and 13.6%. The dermatophytes isolated in dogs were Microsporum canins and Trichophyton mentagrophytes were 75% and 25%. The yeast and superficial fungi isolated in dogs were Candida albicans, Rhodntorula minnata, Candida ceferrii and Malassezia spp. were 16.7%. 16.7%, 16.7% and 50%. The filamentous fungi by Aspergillus funigatus, Aspergillus niger, Penicillum spp., Alternaria spp. were 12.5%, 12.5%, 50%, and 25%. In determine if polymerase chain reaction (PCR) could be applied for diagnosis of dermatophytes, yeast and filamentous fungi, control and clinical samples were tested. The size of specific PCR product in agarose gel was 340 bp for dermatophytes and 210 bp for yeast and filamentous fungi, respectively.

Cellular and Molecular Responses of a Filamentous Fungus Neurospora Crassa to Non-thermal Plasma at Atmospheric Pressure

  • Park, Gyung-Soon;Ryu, Young-Hyo;Hong, Young-June;Uhm, Han-Sup;Choi, Eun-H.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.476-476
    • /
    • 2012
  • Although plasma is an efficient means of microbial sterilization, mechanism of plasma effect on microorganisms still needs to be clarified. In addition, a limited number of studies are available on eukaryotic microorganisms such as yeast and fungi in relation to plasma application. Thus, we investigated cellular and molecular aspects of plasma effects on a filamentous fungus, Neurospora crassa by making use of argon plasma jet at atmospheric pressure. The viability and cell morphology of N. crassa spores exposed to plasma were both significantly reduced depending on the exposure time when treated in water. The intracellular genomic DNA content was dramatically reduced in fungal tissues after a plasma treatment and the transcription factor tah-3 was found to be required for fungal tolerance to a harsh plasma environment.

  • PDF

Improved Transformation of the Filamentous Fungus Aspergillus niger Using Agrobacterium tumefaciens

  • Park, Seung-Moon
    • Mycobiology
    • /
    • 제29권3호
    • /
    • pp.132-134
    • /
    • 2001
  • Since it is known that Agrobacterium tumefaciens, which has long been used to transform plants, can transfer the T-DNA to yeast Saccharomyces cerevisiae during tumourigenesis, a variety of fungi were subjected to transformation to improve their transformation frequency. In this study, I report the A. tumefaciens-mediated transformation of filamentous fungus Aspergillus niger. Transfer of the binary vector pBIN9-Hg, containing the bacterial hygromycin B phosphotransferase gene under the control of the Aspergillus nidulans trpC promoter and terminator as a selectable marker, led to the selection of $50{\sim}100$ hygromycin B-resistant transformants per $1{\times}10^7$ conidia of A. niger. This efficiency is improved $10{\sim}20$ fold more than reported elsewhere. In order to avoid the difficulties in selection transformant from the over-growing non-transformant, I used top agar containing 900 ${\mu}g/ml$ of hygromycin. Genomic PCR and Southern analysis showed that all transformants contained single T-DNA insert per fungal genome. This technique offers an easier and more efficient method than that of using protoplast.

  • PDF

Cloning and Characterization of Filamentous Fungal S-Nitrosoglutathione Reductase from Aspergillus nidulans

  • Zhou, Yao;Zhou, Shengmin;Yu, Haijun;Li, Jingyi;Xia, Yang;Li, Baoyi;Wang, Xiaoli;Wang, Ping
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권5호
    • /
    • pp.928-937
    • /
    • 2016
  • S-Nitrosoglutathione reductase (GSNOR) metabolizes S-nitrosoglutathione (GSNO) and has been shown to play important roles in regulating cellular signaling and formulating host defense by modulating intracellular nitric oxide levels. The enzyme has been found in bacterial, yeast, mushroom, plant, and mammalian cells. However, to date, there is still no evidence of its occurrence in filamentous fungi. In this study, we cloned and investigated a GSNOR-like enzyme from the filamentous fungus Aspergillus nidulans. The enzyme occurred in native form as a homodimer and exhibited low thermal stability. GSNO was an ideal substrate for the enzyme. The apparent Km and kcat values were 0.55 mM and 34,100 min-1, respectively. Substrate binding sites and catalytic center amino acid residues based on those from known GSNORs were conserved in this enzyme, and the corresponding roles were verified using site-directed mutagenesis. Therefore, we demonstrated the presence of GSNOR in a filamentous fungus for the first time.

Green Chemistry Approach for the Synthesis of Gold Nanoparticles Using the Fungus Alternaria sp.

  • Niranjan Dhanasekar, Naresh;Ravindran Rahul, Ganga;Badri Narayanan, Kannan;Raman, Gurusamy;Sakthivel, Natarajan
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권7호
    • /
    • pp.1129-1135
    • /
    • 2015
  • The synthesis of gold nanoparticles has gained tremendous attention owing to their immense applications in the field of biomedical sciences. Although several chemical procedures are used for the synthesis of nanoparticles, the release of toxic and hazardous by-products restricts their use in biomedical applications. In the present investigation, gold nanoparticles were synthesized biologically using the culture filtrate of the filamentous fungus Alternaria sp. The culture filtrate of the fungus was exposed to three different concentrations of chloroaurate ions. In all cases, the gold ions were reduced to Au(0), leading to the formation of stable gold nanoparticles of variable sizes and shapes. UV-Vis spectroscopy analysis confirmed the formation of nanoparticles by reduction of Au3+ to Au0. TEM analysis revealed the presence of spherical, rod, square, pentagonal, and hexagonal morphologies for 1 mM chloroaurate solution. However, quasi-spherical and spherical nanoparticles/heart-like morphologies with size range of about 7-13 and 15-18 nm were observed for lower molar concentrations of 0.3 and 0.5 mM gold chloride solution, respectively. The XRD spectrum revealed the face-centered cubic crystals of synthesized gold nanoparticles. FT-IR spectroscopy analysis confirmed the presence of aromatic primary amines, and the additional SPR bands at 290 and 230 nm further suggested that the presence of amino acids such as tryptophan/tyrosine or phenylalanine acts as the capping agent on the synthesized mycogenic gold nanoparticles.

Study of the Rheological Properties of a Fermentation Broth of the Fungus Beauveria bassiana in a Bioreactor Under Different Hydrodynamic Conditions

  • Nunez-Ramirez, Diola Marina;Medina-Torres, Luis;Valencia-Lopez, Jose Javier;Calderas, Fausto;Lopez-Miranda, Javier;Medrano-Roldan, Hiram;Solis-Soto, Aquiles
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권11호
    • /
    • pp.1494-1500
    • /
    • 2012
  • Fermentation with filamentous fungi in a bioreactor is a complex dynamic process that is affected by flow conditions and the evolution of the rheological properties of the medium. These properties are mainly affected by the biomass concentration and the morphology of the fungus. In this work, the rheological properties of a fermentation with the fungus Beauveria bassiana under different hydrodynamic conditions were studied and the rheological behavior of this broth was simulated through a mixture of carboxymethyl cellulose sodium and cellulose fibers (CMCNa-SF). The bioreactor was a 10 L CSTR tank operated at different stir velocities. Rheological results were similar at 100 and 300 rpm for both systems. However, there was a significant increase in the viscosity accompanied by a change in the consistence index, calculated according to the power law model, for both systems at 800 rpm. The systems exhibited shear-thinning behavior at all stir velocities, which was determined with the power law model. The mixing time was observed to increase as the cellulose content in the system increased and, consequently, the efficiency of mixing diminished. These results are thought to be due to the rheological and morphological similarities of the two fungal systems. These results will help in the optimization of scale-up production of these fungi.

Apolar growth of Neurospora crassa leads to increased secretion of extracellular proteins

  • Lee, In-Hyung;Rodney G. Walline;Michael Plamann
    • 한국미생물생명공학회:학술대회논문집
    • /
    • 한국미생물생명공학회 2000년도 Proceedings of 2000 KSAM International Symposium and Spring Meeting
    • /
    • pp.78-89
    • /
    • 2000
  • Protein secretion in filamentous fungi has been shown to be restricted to actively growing hyphal tips. To determine whether an increase in the amount of growing surface area of a fungus can lead to an increase in the amount of protein secretion, we examined secretion in a temperature-sensitive Neurospora crassa mcb mutant that shows a loss of growth polarity when incubated at restrictive-temperature. Incubation of the mcb mutant at restrictive-temperature results in a three- to five-fold increase in the level of extracellular protein and a 20- fold increase in carboxymethyl cellulase activity relative to a wild-type strain. A mutation in the cr-l gene has been shown previously to suppress the apolar growth phenotype of the mcb mutant, and we find that the level of extracellular protein produced by a mcb; cr-l double mutant was reduced to that of the wild-type control. Immunolocalization of a secreted endoglucanase revealed that proteins are secreted mainly at hyphal tips in hyphae exhibiting polar growth and over the entire surface area of bulbous regions of hyphae that are produced following a shift of the mcb mutant to restrictive-temperature. These results support the hypothesis that secretion of extracellular protein by a filamentous fungus can be significantly increased by mutations that alter growth polarity.

  • PDF

용존산소 제한 또는 탄소원 제한 조건의 유가식배양에서의 Cyclosporin A 생합성 연구 (Studies of Cyclosporin A Biosynthesis under the Conditions of Limited Dissolved Oxygen or Carbon Source in Fed-batch Culture)

  • 전계택;박성관;권호균;정연호;정용섭;장용근;이영행
    • KSBB Journal
    • /
    • 제13권2호
    • /
    • pp.203-208
    • /
    • 1998
  • We investigated the effects of dissolved oxygen (D.O.) and fructose (C-source) on cell growth and biosynthesis of cyclosporin A (CyA) produced as a secondary metabolite by a wild-type filamentous fungus, Tolypocladium inflatum. This was performed by controlling the level of D.O. and the residual C-source, as required, through adjustment of medium flow rate, medium concentration and agitation rate in fed-batch cultures. CyA production was furned out to be maximal, when D.O. level was controlled around 10% saturated D.O. and concentration of the C-source was maintained sufficiently low (below 2 g/L) not to cause carbon catabolite repression. Under this culture condition, we obtained the highest values of CyA concentration (507.14 mg/L), Qp (2.11 mg CyA/L/hr), $Y_x/s$ (0.49 g DCW/g fructose), $Y_p/s$<(22.56 mg CyA/g fructose), and YTEX>$_p/x$ (48.31 mg CyA/g DCW), but relatively lower values of cell concentration (11.98 g DCW/L) and cell productivity (0.043 g DCW/L/hr), in comparison with other parallel fed-batch fermentation conditions. These results implied that, in the carbon-limited culture with 10% saturated D.O. level, the producer microorganism utilized the C-source more efficiently for secondary metabolism.

  • PDF