• Title/Summary/Keyword: filament winding method

Search Result 75, Processing Time 0.027 seconds

Fall Impact Analysis of Type 4 Composite Pressure Vessels Using SPH Techniques (SPH 기법을 활용한 Type 4 복합재료 압력용기 낙하 충격 해석)

  • SONG, GWINAM;KIM, HANSANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.3
    • /
    • pp.172-179
    • /
    • 2021
  • The drop impact analysis was carried out on Type 4 pressure containers, and the degree of damage to the falling environment was predicted and determined using smoothed particle hydrodynamics (SPH) techniques. The purpose of the design and the optimization process of the winding pattern of the pressure vessel of the composite material is to verify the safety of the container in actual use. Finally, an interpretation process that can be implemented in accordance with domestic test standards can be established to reduce the cost of testing and containers through pre-test interpretation. The research on the fall analysis of pressure vessels of composite materials was conducted using Abaqus, and optimization was conducted using ISIGHT. As a result, the safety of composite pressure vessels in the falling environment was verified.

The Effect of Surface Protective Material on the Impact Resistance in Filament Wound Composite Pressure Vessel (필라멘트 와인딩 복합재 압력용기의 충격저항성에 미치는 표면 고무 보호재료의 영향)

  • Kang, Ki-Weon;Kim, Young-Soo;Lee, Mee-Hae;Choi, Rin
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.4 s.72
    • /
    • pp.14-19
    • /
    • 2005
  • One area in which composites have been used rather extensively is for fabricating pressure vessel. These structures can be readily manufactured by filament winding, which is, as far as composite fabrication techniques are concerned, a relatively inexpensive method for producing composite structures. Unfortunately, the higher strength material and fabrication costs are not the only disadvantages of fiber-reinforced polymer composites when they are compared to metals. Additionally, these materials tend to exhibit brittle behavior. This is of particular concern when they are subjected to a low-velocity impact during routine handling a significant amount of structural damage can be introduced into the composites. The goals of this paper are to understand the impact damage behavior and identify the effect of surface coating materials on impact resistance in filament wound composite pressure vessels. For these, a series of low velocity impact tests was performed on specimens cutting from the full scale pressure vessel by the instrumented impact testing machine. The specimens are classified into two types with and without surface protective material. The visualization for impact damage is made by metallurgical microscope. Based on the impact force history and damage, the resistance parameters were employed and its validity in identifying the damage resistance of pressure vessel was reviewed. As the results, the impact resistance of the filament wound composites and its dependency on the protective material were evaluated quantitatively.

Optimization on Weight of High Pressure Hydrogen Storage Vessel Using Genetic Algorithm (유전 알고리즘을 이용한 고압 수소저장용기 중량 최적화)

  • Lee, Y.H.;Park, E.T.;Kim, J.;Kang, B.S.;Song, W.J.
    • Transactions of Materials Processing
    • /
    • v.28 no.4
    • /
    • pp.203-211
    • /
    • 2019
  • In this study, the weight of type IV pressure vessel is optimized through the burst pressure condition using the finite element analysis (FEA) based on the genetic algorithm (GA). The optimization design variables include the thickness of composite layers and the winding angles. The optimized design variables are validated using the numerical simulations for the pressure vessel. Consequently, the weight is decreased by about 6.5% as compared to the previously reported results for Type III pressure vessel. Additionally, a method which reduces the entire optimization time is proposed. In the original method, the population size is constant across all generations. However, the proposed method could reduce the workload through the reduction of the population size by half for every 25 generations. Thus, the proposed method is observed to increase the weight by about 0.1%, however, the working time for the optimization could be decreased by about 46.5%.

A Study on the Next-generation Composite Based on the Highly Porous Carbon Nanotube Fibers (다공성 탄소나노튜브 섬유를 이용한 차세대 복합소재 연구)

  • Lee, Kyunbae;Jung, Yeonsu;Lee, Sang Bok;Kim, Taehoon
    • Composites Research
    • /
    • v.35 no.3
    • /
    • pp.139-146
    • /
    • 2022
  • In this study, we study fabrication methods suitable for CNT fibers-based composite. We try to fabricate a composite material using a small amount of CNT fiber preparation of woven fabrics or stitched unidirectional fabrics consisting of CNT fiber is not achievable currently. The composite materials on the basis of CNT fibers have been mainly manufactured filament winding method due to productivity issues and difficulties in composite processes. We develop a new method to prepare CNT fibers-based composite using resin infiltrated CNT fibers-based films. Because CNT fibers have numerous nanopores inside, unnecessary resin can remain after curing and decrease the mechanical properties of the composites. To remove the excess resin, pressure should be applied during the process, but the pressure applied through VaRTM was not enough to remove the excess resin. To obtain the composite with high ratio of CNT fibers, higher pressure using hot press machine and foams next to the resin-infiltrated CNT fibers are necessary. We can obtain the composite having a mass ratio of 58.5 wt% based on the new suggested method and diluted epoxy. The specific strength of the composite reach 0.525 N/tex. This study presents a new process method that can be applied to the manufacturing of CNT fiber composite materials in the future.

Investigation of Energy Absorption Property of Glass/Epoxy Composite Tubes with Bevel and Tulip Triggers (베벨 및 튤립 트리거를 갖는 유리섬유 복합소재 튜브의 에너지 흡수특성 평가)

  • Kim, Jung Seok
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.4
    • /
    • pp.395-401
    • /
    • 2017
  • Energy absorption capabilities and failure modes of circular tubes made of glass/epoxy with two trigger mechanisms were evaluated. Three types of glass/epoxy tubes were fabricated using a hand lay-up method with unidirectional and woven fabric prepregs tapes, and a filament winding method. The one end of the fabricated tubes was machined for the bevel trigger and tulip trigger. Then, crush tests were conducted at 10 mm/min loading speed, wherein the glass/epoxy tubes were crushed by a brittle fracturing mode combined with fragmentation and lamina-splaying modes. The UD glass/epoxy tubes with a bevel trigger and the filament winded tubes with a tulip trigger showed the maximum and minimum specific energy absorptions, respectively, with a difference of 9.3%. The tube with a tulip trigger exhibited a maximum reduction of 5.7% in the initial peak load; the tube with a bevel trigger showed a maximum increase of 2.9% in the specific energy absorption.

Bond Performance of FRP Reinforcing Bar for Concrete Structures after Chemical Environmental Exposure (화학적 환경에 노출된 콘크리트 보강용 FRP 보강근의 부착 성능)

  • Park, Chan-Gi;Won, Jong-Pil
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.3
    • /
    • pp.73-81
    • /
    • 2004
  • FRP reinforcing bars(rebars) are produced through a variety of manufacturing process includes pultrusion, and filament winding and braiding etc. Each manufacturing method produces a different surface condition of FRP rebar. The surface properties of FRP rebar is an important property for mechanical bond with concrete. Current methods of providing surface deformation to FRP rebars include helical wrapping, surfaces and coating and rib molding. The problem with the helical wrapping method is that it can not provide enough surface deformation for good bond and it can be easily sheard off from the FRP rebars. Sand coating and rib molding provide surface deformation only to the outer FRP skins. Therefore, FRP rebar has about 60% of bond strength of steel rebar. The main objective was to evaluate the bond properties of FRP rebar after environmental exposure. Five types of FRP rebar includes CFRP ISO, GFRP Aslan, AFRP Technora CFRP(Korea), and GFRP(Korea) rebars performed direct bond tests. Also, FRP rebar bond specimens were subjected to exposure conditions including alkaline solution, acid solution, salt solution and deionized water etc. According to bond test results, CFRP(Korea) and CFRP(Korea) rebars were found to have better bond strength with concrete than previous FRP rebars. Also, FRP(Korea) rebar had more than about 70% in bond strength of steel rebar.

Water Vapor Transmission for T800/AD6005 Based Composite Motor Case (T800/AD6005계 복합재 연소관의 습기 투과에 관한 연구)

  • 박명규;류백능;최영보;도영대
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.1
    • /
    • pp.50-58
    • /
    • 1998
  • Water vapor transmission was tested in water bath controlled by $20^{\cire}C$, 90%RH for T800/AD6005 based composite motor case which made by filament winding method. We detected internal relative humidity of composite motor case by inserting the humidity detector through the head of motor case for the study of humidity transmission through the wall of composite motor case. We found out that this composite material appears the water vapor flux of 2.88${\times}$$10^{-9}$g/$\textrm{m}^2$sec and diffusivity of 7.98${\times}$$10^{-7}$$\textrm{mm}^2$/sec at $20^{\cire}C$, 90%RH water vapor condition.

  • PDF

UV-Curing System for the Filament Winding of Large Diameter Pipe (대구경 파이프용 필라멘트 와인딩을 위한 UV 경화시스템)

  • Choi, Jae-Wan;Kim, Se-Il;Chung, Yong-Chan;Chun, Byaung-Chul
    • Clean Technology
    • /
    • v.16 no.4
    • /
    • pp.245-253
    • /
    • 2010
  • Optimum conditions for UV-radiated photopolymerization of unsaturated polyester that could be used as protecting layer of large diameter pipe were investigated in this paper. UV photopolymerization method was selected to solve the problems, arising when thermal polymerization by organic peroxide was used, such as the instability of peroxide initiator, the evolution of volatile organic compound, and thermal deformation of product. Two of the photo-initiators (Irgacure 819 and Darocure 1173) well known for its penetrating ability deep into the polymer layer were selected, and the optimum conditions for photopolymerization (1.5 phr initiator content, 1:1.2 initiator ratio, Ga lamp for UV source) were found from the thermal and mechanical test results of the resultant UP polymers. In addition, composite materials containing UP polymer and glass fiber were tested for hardness, impact strength, and flexural strength to find that the impact strength of composite significantly improved.

Evaluation of Residual Strength of CFRP Pressure Vessel After Low Velocity Impact (저속 충격 하중을 받은 탄소섬유강화 복합재 압력용기의 잔류강도 저하 평가)

  • Park, Jae-Beom;Kim, Dong-Ryun;Kim, Hyung-Geun;Hwang, Tae-Kyung
    • Composites Research
    • /
    • v.21 no.3
    • /
    • pp.9-17
    • /
    • 2008
  • In this paper, the low velocity impact characteristics of filament winding CFRP pressure vessel was investigated using numerical and experimental methods. The cylinder part of CFRP vessel was impacted using triangular shape impactor which simulated the sharp edge of dropping tools and impact response behavior of CFRP was reviewed. The mechanical behavior, such as deformation and stress distribution, were also predicted by explicit finite element method and the validity of the model was investigated. For the quantitative evaluation of the residual strength of the pressure vessel after impact, a series of the ring specimens was cut from the impacted vessel and its burst pressure was measured by hydraulic pressure hoop tension test. As the results, the relationship between the residual strength degradation and the impact energy was successively obtained and a useful methodology to evaluate quantitatively the impact damage tolerance of CFRP pressure vessel was established.

Acoustic Emission Source Location in Filament Wound CFRP Pressure Vessel (필라멘트 와인딩으로 저작된 복합재 압력용기에서 탄성파 발생원의 위치표정)

  • Kim, Jeong-Kon;Won, Yong-Gu;Kwon, Oh-Yang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.5
    • /
    • pp.439-444
    • /
    • 2003
  • Acoustic emission(AE) ran be very effectively applied to locate the damaged area in large structures by detecting the elastic waves generated during the damage process within solids. Source location in the composite structures has been, however, extremely difficult due to the acoustic anisotropy with the velocity dependence on fiber orientations. In this study, it has been shown that a newly proposed method for 2-D source location of anisotropic structures is practically applicable to the real structure. The method employes wave velocities obtained with different velocities from $0^{\circ}\;to\;90^{\circ}$ for a filament wound composite pressure vessel under the air-filled and the water-filled conditions.