• 제목/요약/키워드: filament winding method

검색결과 75건 처리시간 0.027초

열수축을 하는 필라멘트 와인딩 복합재료 관의 설계 (Design of Filament Wound Composite Tubes under Thermal Contraction)

  • 정태은;신효철
    • 대한기계학회논문집
    • /
    • 제17권10호
    • /
    • pp.2407-2417
    • /
    • 1993
  • Thermal deformations and stresses due to temperature changes are the serious problems in cryogenic structures such as the torque tube in a superconducting generator, In this paper, the equations of thermal expansion coefficients expressed only by material properties and winding angles are derived for the filament wound composite tubes. The experimental results of thermal contraction of CFRP tubes are compared with those from theoretical approach. Composite tubes with optimally regulated thermal expansion coefficient are designed on the basis of the study for the torque tube in the superconducting generator with temperature distributions varying from 300K to 4.2 K. The filament winding angle of composites resisting thermal stresses properly is sought by the finite element method using layered shell elements. The results show that the composite tubes designed for the requirements in cryogenic environments can effectively cope with the thermal stress problem.

필라멘트 와인딩 공법에 의한 소형 선박용 복합재료 축 설계를 위한 응력해석에 관한 연구 (A Study on Stress Analysis for Design of Composites Shaft on Small Ship by Filament Winding Process)

  • 배창원;임철문;왕지석;김윤해
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권3호
    • /
    • pp.617-622
    • /
    • 2001
  • The purpose of this study is to design and the analyze the stress of composited shaft which is wound by filament winding method. The composites shaft has high strength and reduction in weight compared to metal shaft. The classical laminate plate theory(CLT) was used fro analysis the stress, and for structure design. In order to replace metal shaft by composites shaft, the diameter of shaft was determined to $\phi$ 40. The ration of diameter was determined to 0.4 for torsional moment with CLT. In this result of analyzing the stress, composites shaft was safe $30^{\circ}~60^{\circ}$C of winding angle, and was fractured on $90^{\circ}$.

  • PDF

Filament winding 공법 GFRP 원형튜브의 에너지 흡수특성에 관한 연구 (A Study on the energy absorption characteristics of GFRP circular tubes fabricated by the filament winding method)

  • 김거영;구정서
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.2059-2065
    • /
    • 2008
  • In this paper, quasi-static crushing tests of composite circular tubes under axial compression load are conducted to investigate the energy absorption characteristics. Circular tubes used for this experiment are glass/epoxy (GFRP) composite tubes, which is fabricated by the filament winding method. One edge of the composite tube is chamfered to reduce the initial peak load and to prevent catastrophic failure during crushing process. Two suggested trigger mechanisms for the composite tubes are investigated. Crushing modes are mainly affected by thickness/diameter ratio, and average crushing loads are mainly affected by their cross-sections. Energy absorption characteristics vary significantly as a function of the tube geometry, trigger mechanism, t/D ratio and the cross-sectional shape.

  • PDF

KSR-III 탑재부 킥모타 개발 1. 축소형 연소관 구조 및 공정 설계 (Development of Payload Kick Motor for KSR-III 1. Design of Downscaled Structure & Processing Method)

  • 조인현;박재성;오승협
    • Composites Research
    • /
    • 제16권2호
    • /
    • pp.1-8
    • /
    • 2003
  • 본 논문에 한국항공우주연구원에서 개발 중인 KSR-III 로켓의 탑재부 축소형 킥모터 구조 설계와 제작공정 개발 내용을 정리하였다. 경량화를 위해 복합재료를 적용하였으며, 복합재 연소관 제작에 널리 사용되는 필라멘트 와인딩 방법을 도입하였다. 복합재 구조설계에는 망목이론(netting theory)과 적층판 이론을 사용하여 요구되는 내압하중에 적합한 와인딩 두께를 결정하였고, 돔형상은 와인딩 및 맨드렐(mandrel) 제작의 편이성을 고려하여 결정하였다. 재료는 경량화를 목표로 T-800 탄소 섬유와 고온용 수지로 선정하였다. 또한 와인딩 후 맨드렐를 제거하기 위해 조립식 맨드렐을 개발하여 적용하였다.

배전용 지지물의 FRP 적용 기술 (Applied Technology of FRP Single Pole for Power Distribution Line)

  • 박기호;조한구;한동희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.79-81
    • /
    • 2000
  • Outdoor insulation of overhead distribution lines with wood, concrete and steel pole has been safety under various environmental conditions including contamination, moisture condensation, rain and lightning overvoltages. In this paper introduce to FRP technology of the power distribution single pole. FRP pole has been used very much as high strength material for insulators because of its high strength and good insulation properties. In addition, FRP pole was made by filament winding method. In a filament winding process, a band of continuous resin-impregnated rovings or monofilaments is wrapped around a rotating mandrel and cured to produce axisymmetric hollow parts.

  • PDF

소형 선박용 복합재료 축 설계를 위한 음력해석에 관한 연구 (A Study on the Stress Analysis for Design of Composite Material Shafts of Small Boats)

  • 김윤해;임철문;배창원;왕지석
    • 대한기계학회논문집A
    • /
    • 제26권2호
    • /
    • pp.308-313
    • /
    • 2002
  • It is known that the composite material shafts using on small boats have various advantages comparing to forged steel shafts, fur examples, specific strength, fatigue strength, corrosion, etc. The analysis of the stresses and strains in the composite material shafts made by filament winding method is presented in this paper. The classical laminated plate theory is applied on the patch cut from the composite material hollow shafts. It is verified that the composite material hollow shafts of diameter 40 mm is the most optimum when the ratio of the inner diameter to the outer is 0.4 and winding angle is 45$^{\circ}$. It is also proven that the shear strain does not change seriously between 30$^{\circ}$and 60$^{\circ}$of winding angles. It is dangerous when the winding angle is over 75$^{\circ}$because the values of shear strain and stress produced on the shaft are too high so it must be avoided to wind the filament by the angle over 75$^{\circ}$.

필라멘트 와인딩 공법으로 제작한 탄소섬유/에폭시 복합소재 평판의 저속 낙하 충격시험 시뮬레이션에 관한 연구 (Stundy on Simulation Characteristics of Low Velocity Impact Test of Carbon/Epoxy Composite Plates Manufactured by Filament Winding Method)

  • 변종익;김종열;허석봉;김한상
    • 한국수소및신에너지학회논문집
    • /
    • 제29권2호
    • /
    • pp.190-196
    • /
    • 2018
  • Carbon fiber/epoxy composites are typical brittle materials and have low impact properties. Recently, it is important to investigate impact characteristics of carbon fiber composites because of increasing use as automobile parts and high pressure hydrogen vessels of fuel cell electric vehicles for light weight. In this study, the low velocity impact properties of carbon fiber/epoxy composites fabricated by a filament winding method are studied. The low velocity impact properties were measured by performing tests according to ASTM D7136. The low velocity impact simulations were carried out using commercial structural analysis software, Abaqus. The absorbed energy and the delamination shapes were compared between the experimental and simulation results. The numerical analysis method showed that the absorbed energy decreased with the reduced number of cohesive elements in the composite models.

필라멘트 와인딩 공법 GFRP 원형 튜브의 에너지 흡수특성에 관한 연구 (A Study on the energy absorption characteristics of GFRP circular tubes fabricated by the filament winding method)

  • 김거영;구정서
    • Composites Research
    • /
    • 제22권4호
    • /
    • pp.1-12
    • /
    • 2009
  • 본 논문에서는 복합재 원형튜브의 에너지 흡수 특성을 평가하기 위해 준정적 압괴실험을 시행하였다. 사용된 시편은 필라멘트 와인딩 공법으로 제작된 GFRP(유리섬유/에폭시수지) 원형 튜브이다. 복합재 튜브의 에너지 흡수 특성 분석을 위한 파라미터로서 튜브의 트리거메커니즘, t/D, 섬유배향각 등을 고려하여 그 특성을 비교하였다. 튜브의 형상 측면에서 튜브 직경이 커짐에 따라 delamination에 의한 국부좌굴 발생빈도가 증가하게 되어 불안정한 압괴모드가 발생하는데 이러한 현상은 섬유 배향각을 조정하여 안정적인 압괴모드를 도출할 수 있었다.

SiCf/SiC 복합체 튜브의 표면조도 및 섬유 부피 분율에 미치는 필라멘트 와인딩 방법의 영향 (Effect of Filament Winding Methods on Surface Roughness and Fiber Volume Fraction of SiCf/SiC Composite Tubes)

  • 김대종;이종민;박지연;김원주
    • 한국세라믹학회지
    • /
    • 제50권6호
    • /
    • pp.359-363
    • /
    • 2013
  • Silicon carbide and its composites are being considered as a nuclear fuel cladding material for LWR nuclear reactors because they have a low neutron absorption cross section, low hydrogen production under accident conditions, and high strength at high temperatures. The SiC composite cladding tube considered in this study consists of three layers, monolith CVD SiC - $SiC_f$/SiC composite -monolith CVD SiC. The volume fraction of SiC fiber and surface roughness of the composite layer affect mechanical and corrosion properties of the cladding tube. In this study, various types of SiC fiber preforms with tubular shapes were fabricated by a filament winding method using two types of Tyranno SA3 grade SiC fibers with 800 filaments/yarn and 1600 filaments/yarn. After chemical vapor infiltration of the SiC matrix, the surface roughness and fiber volume fraction were measured. As filament counts were changed from 800 to 1600, the surface roughness increased but the fiber volume fraction decreased. The $SiC_f$/SiC composite with a bamboo-like winding pattern has a smaller surface roughness and a higher fiber volume fraction than that with a zigzag winding pattern.

FRP에서 와인딩 각도에 따른 압축강도의 시뮬레이션과 특성평가 (Simulation and Evaluation of Compressive Strength of FRP According to the Winding Orientation of Glass Fiber)

  • 박효열;강동필;한동희;김인성;표현동
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 영호남학술대회 논문집
    • /
    • pp.250-253
    • /
    • 2000
  • The fiber orientation in FRP has a great effect on the strength of FRP because the strength of FRP mainly depends on the strength of fiber. Unidirectional FRP made by pultrusion method has comparatively lower compressive strength than tensile strength. Compressive strength of unidirectional FRP may be increased by filament winding layer which has tensile stress when compressive stress was loaded. In this study, compressive strength and stresses of FRP rods were simulated according to the winding orientation of glass fiber. Inner part of FRP was made unidirectionally by pultrusion method and outer part of FRP was made by filament winding method. Simulated value and real evaluated compressive strength were compared to investigate stresses which is prominent to the fracture of FRP. The shear stresses had a great effect on the strength of FRP although the stress of parallel direction of FRP was much higher.

  • PDF