• Title/Summary/Keyword: filament winding composite

Search Result 134, Processing Time 0.033 seconds

Behaviors of Mechanical Properties of Filament-Winding-Laminated Composites due to Environmental Aging (필라멘트 와인딩 복합재의 환경노화에 따른 기계적물성 평가)

  • Choi Nak-Sam;Yun Young-Ju;Lee Sang-Woo;Kim Duck-Jae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.31-35
    • /
    • 2006
  • Degradation characteristics of filament-winded composites due to accelerated environmental aging have been evaluated under high temperature, water immersion and thermal impact conditions. Two kinds of laminated composites coated by an urethane resin have been used: carbon-fiber reinforced epoxy(T700/Epon-826, CFRP) and glass-fiber reinforced phenolic (E-glass/phenolic, GFRP). For tensile strength of $0^{\circ}$ composites, CFRP did high reduction by 25% under the influence of high temperature and water while CFRP showed little degradation. However for water-immersed $90^{\circ}$ composites both CFRP and GFRP showed high reduction in tensile strength. Bending strength and modulus of $90^{\circ}$ composites were largely reduced in water-immersion as well as high temperature environment. Urethane coating on the composite surface improved the bending properties by 20%, however hardly showed such improvement for water-immersed $90^{\circ}$ composites.

  • PDF

UV-Curing System for the Filament Winding of Large Diameter Pipe (대구경 파이프용 필라멘트 와인딩을 위한 UV 경화시스템)

  • Choi, Jae-Wan;Kim, Se-Il;Chung, Yong-Chan;Chun, Byaung-Chul
    • Clean Technology
    • /
    • v.16 no.4
    • /
    • pp.245-253
    • /
    • 2010
  • Optimum conditions for UV-radiated photopolymerization of unsaturated polyester that could be used as protecting layer of large diameter pipe were investigated in this paper. UV photopolymerization method was selected to solve the problems, arising when thermal polymerization by organic peroxide was used, such as the instability of peroxide initiator, the evolution of volatile organic compound, and thermal deformation of product. Two of the photo-initiators (Irgacure 819 and Darocure 1173) well known for its penetrating ability deep into the polymer layer were selected, and the optimum conditions for photopolymerization (1.5 phr initiator content, 1:1.2 initiator ratio, Ga lamp for UV source) were found from the thermal and mechanical test results of the resultant UP polymers. In addition, composite materials containing UP polymer and glass fiber were tested for hardness, impact strength, and flexural strength to find that the impact strength of composite significantly improved.

Investigation of Energy Absorption Property of Glass/Epoxy Composite Tubes with Bevel and Tulip Triggers (베벨 및 튤립 트리거를 갖는 유리섬유 복합소재 튜브의 에너지 흡수특성 평가)

  • Kim, Jung Seok
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.4
    • /
    • pp.395-401
    • /
    • 2017
  • Energy absorption capabilities and failure modes of circular tubes made of glass/epoxy with two trigger mechanisms were evaluated. Three types of glass/epoxy tubes were fabricated using a hand lay-up method with unidirectional and woven fabric prepregs tapes, and a filament winding method. The one end of the fabricated tubes was machined for the bevel trigger and tulip trigger. Then, crush tests were conducted at 10 mm/min loading speed, wherein the glass/epoxy tubes were crushed by a brittle fracturing mode combined with fragmentation and lamina-splaying modes. The UD glass/epoxy tubes with a bevel trigger and the filament winded tubes with a tulip trigger showed the maximum and minimum specific energy absorptions, respectively, with a difference of 9.3%. The tube with a tulip trigger exhibited a maximum reduction of 5.7% in the initial peak load; the tube with a bevel trigger showed a maximum increase of 2.9% in the specific energy absorption.

Design of a Composite Propeller Shaft with the Reduced Weights and Improved NVH (경량화 및 NVH 향상을 위한 복합재료 프로펠러 축의 설계)

  • Yoon, Hyung-Seok;Kim, Cheol;Moon, Myung-Soo;Oh, Sang-Yeob
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.151-159
    • /
    • 2003
  • The front 2 pieces of the 3-piece steel propeller shaft installed on a 8.5-ton truck were redesigned with a 1 -piece composite propeller shaft with steel yokes and spline parts to get the reduction of weight and the improvement of NVH characteristics. Based on the analysis of bending vibration, strength and cure-induced residual stresses of the composite propeller shaft, proper composite materials and stacking sequences were selected. The composite propeller shaft requires a reliable joining method between the shaft and steel end parts through a steel connector. From 3-D contact stress analyses of the laminated composite shaft with bolted Joints, the 3-row mechanical joint which satisfies the torque transmission capability has been designed. Several full-scale composite shafts were fabricated and tested to verify the design analyses. The design requirements are shown to be satisfied. With the newly designed composite shaft, the weight reduction more than 50% and improvements in NVH characteristics have been achieved.

Stress-strain Relations of Concrete Confined with Tubes Having Varying GFRP Layers (수적층 및 필라멘트 와인딩을 이용한 GFRP튜브로 구속된 콘크리트의 압축 거동)

  • Lee, Sung Woo;Choi, Sokhwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6A
    • /
    • pp.861-872
    • /
    • 2008
  • Concrete-filled glass fiber reinforced polymer tubes are often used for marine structures with the benefit of good durability and high resistance against corrosion under severe chemical environment. Current research presents results of a comprehensive experimental investigation on the behavior of axially loaded circular concrete-filled glass fiber reinforced polymer tubes. This paper is intended to examine several aspects related to the usage of glass fiber fabrics and filament wound layers used for outer shell of piles subjected to axial compression. The objectives of the study are as follows: (1) to evaluate the effectiveness of filament winding angle of glass fiber layers (2) to evaluate the effect of number of GFRP layers on the ultimate load and ductility of confined concrete (3) to evaluate the effect of loading condition of specimens on the effectiveness of confinement and failure characteristics as well, and (4) to propose a analytical model which describes the stress-strain behavior of the confined concrete. Three different types of glass fiber layers were chosen; fabric layer, ${\pm}45^{\circ}$ filament winding layer, and ${\pm}85^{\circ}$ filament winding layer. They were put together or used independently in the fabrication of tubes. Specimens that have various L:D ratios and different diameters have also been tested. Totally 27 GFRP tube specimens to investigate the tension capacity, and 66 concrete-filled GFRP tube specimens for compression test were prepared and tested. The behavior of the specimens in the axial and transverse directions, failure types were investigated. Analytical model and parameters were suggested to describe the stress-strain behavior of concrete under confinement.

Effect of Temperature on Interlaminar Fracture Toughness of Filament-Wound Carbon/Epoxy Composites (필라멘트 와인딩된 카본/에폭시 복합재의 층간파괴인성에 미치는 온도 영향)

  • Im, JaeMoon;Shin, KwangBok;Hwang, Taekyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.5
    • /
    • pp.491-497
    • /
    • 2015
  • This paper reports an experimental study for evaluating the effect of temperature on the mode I, mode II and mixed-mode interlaminar fracture toughness of adhesive joints with a curved cross-section of filament-wound dome-separated composite pressure vessel. Mode I and mixed-mode interlaminar fracture toughness were evaluated using DCB specimens, while mode II interlaminar fracture toughness was determined using ENF specimens. $[{\pm}10^{\circ}]_6$, $[{\pm}27^{\circ}]_6$ and ($[{\pm}10^{\circ}]_3/FM73/[{\pm}27^{\circ}]_3$) winding specimens with the curved cross-section were considered. In-situ temperature environments were simulated with a range of $-30^{\circ}C-60^{\circ}C$ using an environmental chamber and furnace. Experimental results on the effect of temperature indicate that interlaminar fracture toughness tends to be high at low temperature and is degraded with increase in temperature. For specimen types, it was found that interlaminar fracture toughness of $[{\pm}10^{\circ}]_3/FM73/[{\pm}27^{\circ}]_3$ winding specimens considered as adhesive joints of dome and helical part was higher than other specimens.

Study for Natural Frequency of Offshore Wind Turbine Tower (해상 풍력 발전용 Tower의 고유 진동 해석에 관한 연구)

  • Won, Jong-Bum;Lee, Kang-Su;Son, Choong-Yul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1296-1301
    • /
    • 2006
  • The Object of this paper which study for natural frequency of Offshore Wind Turbine Tower with Composite Material and Steel. The Composit Material Tower consist of shell type and stiffened shell type which is made by the method of Filament Winding. And the component of Composite material is used by the Roving RS220PE-535. The Steel Material Tower consist of shell type and stiffened shell type which is made of Mild steel. The Type of Stiffener is hats. This paper compare the Composit Material Offshore Wind Turbine Tower with the Steel Material Offshore wind Turbine Tower and study for Natural Frequency and Mode Shapes.

  • PDF

The influence of production inconsistencies on the functional failure of GRP pipes

  • Rafiee, Roham;Fakoor, Mahdi;Hesamsadat, Hadi
    • Steel and Composite Structures
    • /
    • v.19 no.6
    • /
    • pp.1369-1379
    • /
    • 2015
  • In this study, a progressive damage modeling is developed to predict functional failure pressure of GRP pipes subjected to internal hydrostatic pressure. The modeling procedure predicts both first-ply failure pressure and functional failure pressure associated with the weepage phenomenon. The modeling procedure is validated using experimental observations. The random parameters attributed to the filament winding production process are identified. Consequently, stochastic simulation is conducted to investigate the influence of induced inconsistencies on the functional failure pressures of GRP pipes. The obtained results are compared to realize the degree to which random parameters affect the performance of the pipe in operation.

Acoustic Emission Source Location in Filament Wound CFRP Pressure Vessel (필라멘트 와인딩으로 저작된 복합재 압력용기에서 탄성파 발생원의 위치표정)

  • Kim, Jeong-Kon;Won, Yong-Gu;Kwon, Oh-Yang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.5
    • /
    • pp.439-444
    • /
    • 2003
  • Acoustic emission(AE) ran be very effectively applied to locate the damaged area in large structures by detecting the elastic waves generated during the damage process within solids. Source location in the composite structures has been, however, extremely difficult due to the acoustic anisotropy with the velocity dependence on fiber orientations. In this study, it has been shown that a newly proposed method for 2-D source location of anisotropic structures is practically applicable to the real structure. The method employes wave velocities obtained with different velocities from $0^{\circ}\;to\;90^{\circ}$ for a filament wound composite pressure vessel under the air-filled and the water-filled conditions.

Recalculation Research of Material properties for CFRP FEM Non-linear Analysis (CFRP FEM 비선형 해석을 위한 물성치 재확립에 관한 연구)

  • Kim, Jung-Ho;Kim, Chi-Joong;Cha, Cheon-Seok;Kim, Ji-Hoon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.608-612
    • /
    • 2012
  • To reduce these costs and time by finite element analysis program has been much research (3~4). At virtual CAE program as like Abaques, Ansys, Ls-dyna and Nastran, the input data of material is got bellow coupon test. In case of carbon composite, it is also put in lamina/laminate properties. There have big problem. If you want to simulate FW(filament winding or wind blade) how do you input material data. Each area of FW is different stacking conditions. It's too hard that each area is tested for inputting lamina or laminate properties. The composite structure increasing load is applied occurred as the matrix dependence of the crack-induced nonlinearity and nonlinear mobility appears since the initial damage. And uni-direction for this research applies the theory to have been confined to. On this study, we are going to get basically fiber properties and matrix than carbon composite properties for simulating according stacking method by GENOA-MCQ. It is help to simulate easily composite material. Also Calculate the matrix nonlinear for simulating non-linear.