• Title/Summary/Keyword: figure of merit (FoM)

Search Result 18, Processing Time 0.02 seconds

Design Optimization of a One-Stage Low Noise Amplifier below 20 GHz in 65 nm CMOS Technology (65 nm CMOS 기술을 적용한 20 GHz 이하의 1 단 저잡음 증폭기 설계)

  • Shen, Ye-Hao;Lee, Jae-Hong;Shin, Hyung-Cheol
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.6
    • /
    • pp.48-51
    • /
    • 2009
  • One-stage low noise amplifier (LNA) using 65 nm RF CMOS technology below 20 GHz is designed to find the optimal bias voltage and optimal width of input transistor so that the maximum figure of merit (FoM) has been achieved. If the frequency is higher than 13 GHz, the amplifier needs two-stage to achieve the higher gain. If the frequency is lower than 5 GHz, one additional capacitor between gate and source should be added to control the power under the limitation. This paper summarizes one-stage LNA overall performances below 20 GHz and this approach can also be applied to other CMOS technology of LNA designs.

Development of Mission Analysis and Design Tool for ISR UAV Mission Planning (UAV 감시정보정찰 임무분석 및 설계 도구 개발)

  • Kim, Hongrae;Jeon, Byung-Il;Lee, Narae;Choi, Seong-Dong;Chang, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.2
    • /
    • pp.181-190
    • /
    • 2014
  • The optimized flight path planning which is appropriate for UAV operation with high performance and multiplex sensors is required for efficient ISR missions. Furthermore, a mission visualization tool is necessary for the assessment of MoE(Measures of Effectiveness) prior to mission operation and the urgent tactical decision in peace time and wartime. A mission visualization and analysis tool was developed by combining STK and MATLAB, whose tool was used for UAV ISR mission analyses in this study. In this mission analysis tool, obstacle avoidance and FoM(Figure of Merit) analysis algorithms were applied to enable the optimized mission planning.

A 1 GHz Tuning range VCO with a Sigma-Delta Modulator for UWB Frequency Synthesizer (UWB 주파수 합성기용 1 GHz 광 대역 시그마 델타 성긴 튜닝형 전압 제어 발진기)

  • Nam, Chul;Park, An-Su;Park, Joon-Sung;Pu, Young-Gun;Hur, Jeong;Lee, Kang-Yoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.8
    • /
    • pp.64-72
    • /
    • 2010
  • This paper presents a wide range VCO with fine coarse tuning step using a sigma-delta modulation technique for UWB frequency synthesizer. The proposed coarse tuning scheme provides the low effective frequency resolution without any degradation of phase noise performance. With three steps coarse tuning, the VCO has wide tuning range and fine tuning step simultaneously. The frequency synthesizer with VCO was implemented with 0.13 ${\mu}m$ CMOS technology. The tuning range of the VCO is 5.8 GHz~6.8 GHz with the effective frequency resolution of 3.9 kHz. It achieves the measured phase noise of -108 dBc/Hz at 1 MHz offset and a tuning range 16.8 % with 5.9 mW power. The figure-of-merit with the tuning range is -181.5 dBc/Hz.

A Design of Low-Power Bypassing Booth Multiplier (저전력 바이패싱 Booth 곱셈기 설계)

  • Ahn, Jong Hun;Choi, Seong Rim;Nam, Byeong Gyu
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.5
    • /
    • pp.67-72
    • /
    • 2013
  • A low-power bypassing Booth multiplier for mobile multimedia applications is proposed. The bypassing structure directly transfers input values to outputs without switching the internal nodes of a multiplier, enabling low-power design. The proposed Booth multiplier adopts the bypassing structure while the bypassing is usually adopted in the Braun multipliers. Simulation results show the proposed Booth multiplier achieves an 11% reduction in terms of the proposed FoM compared to prior works.

Design of a 6-bit 500MS/s CMOS A/D Converter with Comparator-based Input Voltage Range Detection Circuit

  • Dae, Si;Yoon, Kwang Sub
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.6
    • /
    • pp.706-711
    • /
    • 2014
  • A low power 6-bit flash ADC that uses an input voltage range detection algorithm is described. An input voltage level detector circuit has been designed to overcome the disadvantages of the flash ADC which consume most of the dynamic power dissipation due to comparators array. In this work, four digital input voltage range detectors are employed and each input voltage range detector generates the specific clock signal only if the input voltage falls between two adjacent reference voltages applied to the detector. The specific clock signal generated by the detector is applied to turn the corresponding latched comparators on and the rest of the comparators off. This ADC consumes 68.82 mW with a single power supply of 1.2V and achieves 4.3 effective number of bits for input frequency up to 1 MHz at 500 MS/s. Therefore it results in 4.6 pJ/step of Figure of Merit (FoM). The chip is fabricated in 0.13-um CMOS process.

Design of an 1.8V 6-bit 100MS/s 5mW CMOS A/D Converter with Low Power Folding-Interpolation Techniques (저 전력 Folding-Interpolation기법을 적용한 1.8V 6-bit 100MS/s 5mW CMOS A/D 변환기의 설계)

  • Moon Jun-Ho;Hwang Sang-Hoon;Song Min-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.8 s.350
    • /
    • pp.19-26
    • /
    • 2006
  • In this paper, CMOS analog-to-digital converter (ADC) with a 6-bit 100MSPS at 1.8V is described. The architecture of the proposed ADC is based on a folding type ADC using resistive interpolation technique for low power consumption. Further, the number of folding blocks (NFB) is decreased by half of them compared to the conventional ones. A moebius-band averaging technique is adopted at the proposed ADC to improve performance. With the clock speed of 100MSPS, the ADC achieves an effective resolution bandwidth (ERBW) of 50MHz, while consuming only 4.5mW of power. The measured result of figure-of-merit (FoM) is 0.93pJ/convstep. The INL and DNL are within ${\pm}0.5 LSB$, respectively. The active chip occupies an area of $0.28mm^2$ in 0.18um CMOS technology.

Characteristics of Amorphous/Polycrystalline $BaTiO_3$ Double Layer Thin Films with High Performance Prepared New Stacking Method and its Application to AC TFEL Device (새로운 적층방법으로 제조된 고품위 비정질/다결정 $BaTiO_3$ 적층박막의 특성과 교류 구동형 박막 전기 발광소자에의 응용)

  • 송만호;이윤희;한택상;오명환;윤기현
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.7
    • /
    • pp.761-768
    • /
    • 1995
  • Double layered BaTiO3 thin films with high dielectric constant as well as good insulating property were prepared for the application to low voltage driving thin film electroluminescent (TFEL) device. BaTiO3 thin films were formed by rf-magnetron sputtering technique. Amorphous and polycrystalline BaTiO3 thin films were deposited at the substrate temperatures of room temperature and 55$0^{\circ}C$, respectively. Two kinds of films prepared under these conditions showed high resistivity and high dielectric constant. The figure of merit (=$\varepsilon$r$\times$Eb.d) of polycrystalline BaTiO3 thin film was very high (8.43$\mu$C/$\textrm{cm}^2$). The polycrystalline BaTiO3 showed a substantial amount of leakage current (I), under the high electric field above 0.5 MV/cm. The double layered BaTiO3 thin film, i.e., amorphous BaTiO3 layer coated polycrystalline BaTiO3 thin film, was prepared by the new stacking method and showed very good dielectric and insulating properties. It showed a high dielectric constant fo 95 and leakage current density of 25 nA/$\textrm{cm}^2$ (0.3MV/cm) with the figure of merit of 20$\mu$C/$\textrm{cm}^2$. The leakage current density in the double layered BaTiO3 was much smaller than that in polycrystalline BaTiO3 under the high electric field. The saturated brightness of the devices using double layered BaTiO3 was about 220cd/$m^2$. Threshold voltage of TFEL devices fabricated on double layered BaTiO3 decreased by 50V compared to the EL devices fabricated on amorphous BaTiO3.

  • PDF

Design of a Low Power 10bit Flash SAR A/D Converter (저 전력 10비트 플래시-SAR A/D 변환기 설계)

  • Lee, Gi-Yoon;Kim, Jeong-Heum;Yoon, Kwang-Sub
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.4
    • /
    • pp.613-618
    • /
    • 2015
  • This paper proposed a low power CMOS Flash-SAR A/D converter which consists of a Flash A/D converter for 2 most significant bits and a SAR A/D converter with capacitor D/A converter for 8 least significant bits. Employment of a Flash A/D converter allows the proposed circuit to enhance the conversion speed. The SAR A/D converter with capacitor D/A converter provides a low power dissipation. The proposed A/D converter consumes $136{\mu}W$ with a power supply of 1V under a $0.18{\mu}m$ CMOS process and achieves 9.16 effective number of bits for sampling frequency up to 2MHz. Therefore it results in 120fJ/step of Figure of Merit (FoM).

Low Power 31.6 pJ/step Successive Approximation Direct Capacitance-to-Digital Converter (저전력 31.6 pJ/step 축차 근사형 용량-디지털 직접 변환 IC)

  • Ko, Youngwoon;Kim, Hyungsup;Moon, Youngjin;Lee, Byuncheol;Ko, Hyoungho
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.93-98
    • /
    • 2018
  • In this paper, an energy-efficient 11.49-bit successive approximation register (SAR) capacitance-to-digital converter (CDC) for capacitive sensors with a figure of merit (FoM) of 31.6 pJ/conversion-step is presented. The CDC employs a SAR algorithm to obtain low power consumption and a simplified structure. The proposed circuit uses a capacitive sensing amplifier (CSA) and a dynamic latch comparator to achieve parasitic capacitance-insensitive operation. The CSA adopts a correlated double sampling (CDS) technique to reduce flicker (1/f) noise to achieve low-noise characteristics. The SAR algorithm is implemented in dual operating mode, using an 8-bit coarse programmable capacitor array in the capacitance-domain and an 8-bit R-2R digital-to-analog converter (DAC) in the charge-domain. The proposed CDC achieves a wide input capacitance range of 29.4 pF and a high resolution of 0.449 fF. The CDC is fabricated in a $0.18-{\mu}m$ 1P6M complementary metal-oxide-semiconductor (CMOS) process with an active area of 0.55 mm2. The total power consumption of the CDC is $86.4{\mu}W$ with a 1.8-V supply. The SAR CDC achieves a measured 11.49-bit resolution within a conversion time of 1.025 ms and an energy-efficiency FoM of 31.6 pJ/step.

Design of a 12b SAR ADC for DMPPT Control in a Photovoltaic System

  • Rho, Sung-Chan;Lim, Shin-Il
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.3
    • /
    • pp.189-193
    • /
    • 2015
  • This paper provides the design techniques of a successive approximation register (SAR) type 12b analog-to-digital converter (ADC) for distributed maximum power point tracking (DMPPT) control in a photovoltaic system. Both a top-plate sampling technique and a $V_{CM}$-based switching technique are applied to the 12b capacitor digital-to-analog converter (CDAC). With these techniques, we can implement a 12b SAR ADC with a 10b capacitor array digital-to-analog converter (DAC). To enhance the accuracy of the ADC, a single-to-differential converted DAC is exploited with the dual sampling technique during top-plate sampling. Simulation results show that the proposed ADC can achieve a signal-to-noise plus distortion ratio (SNDR) of 70.8dB, a spurious free dynamic range (SFDR) of 83.3dB and an effective number of bits (ENOB) of 11.5b with bipolar CMOS LDMOD (BCDMOS) $0.35{\mu}m$ technology. Total power consumption is 115uW under a supply voltage of 3.3V at a sampling frequency of 1.25MHz. And the figure of merit (FoM) is 32.68fJ/conversion-step.