• Title/Summary/Keyword: field water content

Search Result 641, Processing Time 0.033 seconds

Space Charge Phenomena in Polyimide Films and Effects of Absorbed Water (폴리이미드 박막의 공간전하현상 및 수분의 영향)

  • Yun, Ju-Ho;Choi, Yong-Sung;Hwang, Jong-Sun;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04c
    • /
    • pp.82-85
    • /
    • 2008
  • Polyimide is widely used as a high-temperature insulating material. Space charge distributions in polyimide (PI) films strongly depend upon electric field, temperature, water content and so on. We observed space charge distributions in PI films with various water contents. When a dc field was applied to as-received PI films or water-treated PI films, positive and negative homo space charges were observed near the respective electrodes at 333 K. In dried PI films, the homo space charges were much reduced, and positive and negative hetero space charges in the bulk were clearly observed. The space charge amounts in water-treated PI films were smaller than in as-received ones, while the current density in water-treated PI film was larger than that in as-received one by two or more orders of magnitude. These suggest not only that the charge injection from the electrode is enhanced by absorbed water but also that absorbed water makes carriers mobile. The decay of space charge was also faster in water-treated PI than in as-received or dried one. This also supports the enhancement of apparent mobilities of carriers in PI by absorbed water.

  • PDF

Aerosol Deposition and Behavior on Leaves in Cool-temperate Deciduous Forests. Part 3: Estimation of Fog Deposition onto Cool-temperate Deciduous Forest by the Inferential Method

  • Katata, Genki;Yamaguchi, Takashi;Sato, Haruna;Watanabe, Yoko;Noguchi, Izumi;Hara, Hiroshi;Nagai, Haruyasu
    • Asian Journal of Atmospheric Environment
    • /
    • v.7 no.1
    • /
    • pp.17-24
    • /
    • 2013
  • Fog deposition onto the cool-temperate deciduous forest around Lake Mashu in northern Japan was estimated by the inferential method using the parameterizations of deposition velocity and liquid water content of fog (LWC). Two parameterizations of fog deposition velocity derived from field experiments in Europe and numerical simulations using a detailed multi-layer atmosphere-vegetation-soil model were tested. The empirical function between horizontal visibility (VIS) and LWC was applied to produce hourly LWC as an input data for the inferential method. Weekly mean LWC computed from VIS had a good correlation with LWC sampled by an active string-fog collector. By considering the enhancement of fog deposition due to the edge effect, fog deposition calculated by the inferential method using two parameterizations of deposition velocity agreed with that computed from throughfall data. The results indicated that the inferential method using the current parameterizations of deposition velocity and LWC can provide a rough estimation of water input due to fog deposition onto cool-temperature deciduous forests. Limitations of current parameterizations of deposition velocity related to wind speed, evaporation loss of rain and fog droplets intercepted by tree canopies, and leaf area index were discussed.

INFLUENCES OF SOIL-WATER PROPERTIES ON GROWTH OF MEDICINAL PLANT "KANZO" UNDER CONSTANT GROUNDWATER LEVEL

  • Kiyotomo, Haruka;Yasufuku, Noriyuki;Omine, Kiyoshi;Kobayashi, Taizo;Furukawa, Zentaro
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09c
    • /
    • pp.81-85
    • /
    • 2010
  • The medicinal plant, Kanzo (Glycyrrhiza uralensis), mainly grows on arid lands. The root of Kanzo has been compounded about 70% of herbal medicines in Japan because it has an important medicinal element. In addition, in recent years, the expansion of desertification becomes a serious problem. The cause is chiefly man activity such as over gathering plants1). The aim of this study is to prevent desertification by cultivating Kanzo with high quality. The first step is to grow Kanzo for greening. The second step is to stably produce the root with high medicinal quality. This paper presents growth properties of cultivating Kanzo by bottom watering method, which is under constant groundwater level. The main results of this paper are as follows: (1) The lower water content of cultivating soil is, the longer the root length is, (2) Growth of Kanzo is influenced by soil types, (3) Thick primary roots grow directly and vertically in low water content. On the other hand, thin secondary roots grow curvedly and horizontally in high water content and (4) Measuring evapo-transpiration velocity is the effective method to evaluate roots' growth tendency in the field.

  • PDF

A comprehensive laboratory compaction study: Geophysical assessment

  • Park, Junghee;Lee, Jong-Sub;Jang, Byeong-Su;Min, Dae-Hong;Yoon, Hyung-Koo
    • Geomechanics and Engineering
    • /
    • v.30 no.2
    • /
    • pp.211-218
    • /
    • 2022
  • This study characterizes Proctor and geophysical properties in a broad range of grading and fines contents. The results show that soil index properties such as uniformity and fines plasticity control the optimum water content and peak dry unit trends, as well as elastic wave velocity. The capillary pressure at a degree of saturation less than S = 20% plays a critical role in determining the shear wave velocity for poorly graded sandy soils. The reduction in electrical resistivity with a higher water content becomes pronounced as the water phase is connected A parallel set of compaction and geophysical properties of sand-kaolinite mixtures reveal that the threshold boundaries computed from soil index properties adequately capture the transitions from sand-controlled to kaolinite-controlled behavior. In the transitional fines fraction zone between FF ≈ 20 and 40%, either sand or kaolinite or both sand and kaolinite could dominate the geophysical properties and all other properties associated with soil compaction behavior. Overall, the compaction and geophysical data gathered in this study can be used to gain a first-order approximation of the degree of compaction in the field and produce degree of compaction maps as a function of water content and fines fraction.

Sediment Properties and Growth of Phragmites australis in Mud Tidal Flat (조간대 저토 환경과 갈대의 생장 특성)

  • Min, Byeong Mee
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.14 no.3
    • /
    • pp.57-69
    • /
    • 2011
  • This study examined the relationship between Phragmites australis' growth and sediment properties at mud tidal flat of Donggum-ri, Gilsang-myeon, Gangwha-gun, Incheon city. Field survey was carried out from May, 2010 to October, 2010. Water content, soil texture, electric conductivity and water table depth for sediment, density, height, dry weight and flowering for P. australis were examined at several plots from the starting point (the coastal embankment) to the end point of the two populations. The result was as follows. Firstly, the water table increased along distance from the embankment at one line (N-line) but was similar at the other line (S-line) in a P. asustralis population. Water tables were higher out of than within a P. australis population at two populations. Secondary, in N-line, the height and dry weight of P. australis decreased along the distance from embankment but, in S-line, those were similar in its population. P. australis' growth was dependent on electric conductivity at lower layer (water table level) rather than upper one (the surface). Thirdly, density of P. australis changed during growing season and was similar in a population, except for the end point of patch. In summary, the growth and distribution of P. australis were dependent on salt content of tidal flat's sediment (water table level) and this was affected by fresh water of the inland.

The Influence on the Runoff Characteristics by the Land Use in Small Watersheds (소유역의 토지이용이 유출 특성에 미치는 영향)

  • Choi, Ye-Hwan;Choi, Joong-Dae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.204-208
    • /
    • 2004
  • In the forthcoming 21C, the barometer of cultural lives depends on that the water demand will increase or not. On the opposite site of that, the small watersheds will influence directly on how to cover the surface of watersheds with land use, no planning developing watersheds, and the rearrangement of small rivers. Espacially as the exordinary climatic phenomena, water resources and water content of the small watersheds will be confused oil exactly not to make a plan of water resources. This study area has four small watersheds groups in Gangwon-Do Province, that is, group I five small river watersheds including Changchoncheon etc., group II fiver rivers watersheds including to Hwalsanmogicheon etc., group III five small river watersheds including Singicheon etc., group IV including to Sabulanggolcheon etc. According to the land use such as dry field(or farm), ice field, forest land, building lot arid others, in small watersheds, the amount of runoff will be impacted by precipitation. The comparison between the runoff was getting from Kajiyama Formular and calculated runoff from multi-linear regressed equations by land use percentage was performed. Its correlation which was estimated by coefficient of correlation will be accepted or not, as approched 1.00000 values. As the monthly water resources amount is estimated by multi-linear regressed equations, we make a plan to demand and supply the water quantity from small river watersheds during any return periods.

  • PDF

A Research Trend on High Density Polyethylene Electrical Strength (폴리이미드 박막의 공간전하현상에 관한 연구 동향)

  • Choi, Keun-Ho;Oh, Chang-Keun;Shin, Hyun-Man;Hwang, Jong-Sun;Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1984-1985
    • /
    • 2007
  • Polyimide is widely used as a high-temperature insulating material. Space charge distributions in polyimide (PI) films strongly depend upon electric field, temperature, water content and so on. We observed space charge distributions in PI films with various water contents. When a dc field was applied to as-received PI films or water-treated PI films, positive and negative homo space charges were observed near the respective electrodes at 333 K. In dried PI films, the homo space charges were much reduced, and positive and negative hetero space charges in the bulk were clearly observed. The space charge amounts in water-treated PI films were smaller than in as-received ones, while the current density in water-treated PI film was larger than that in as-received one by two or more orders of magnitude. These suggest not only that the charge injection from the electrode is enhanced by absorbed water but also that absorbed water makes carriers mobile. The decay of space charge was also faster in water-treated PI than in as-received or dried one. This also supports the enhancement of apparent mobilities of carriers in PI by absorbed water.

  • PDF

Prediction of Physical Characteristics of Cement-Admixed Clay Ground (점토-시멘트 혼합 지반의 물리적 특성 예측)

  • Park, Minchul;Jeon, Jesung;Jeong, Sangguk;Lee, Song
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.529-536
    • /
    • 2014
  • Physical characteristics of cement-admixed clay such as water content, specific gravity, unit weight and void ratio are main factors for strength, compressibility and prediction of consolidation behavior. In the past, the physical characteristics of admixed soils could be understanded through complex laboratory tests and field survey after construction. In this study, the tests were performed with conditions such as clay water contents 0%-170%, cement contents 5%-25% and curing period 3-90days after that analyzed for changes which are water content, specific gravity unit weight and void ratio of admixed soils. A prediction of properties through mechanical relationships with clay in situ water content, cement content and curing period could be proposed using the test results. The prediction equation of void ratio of admixed soils was derived using void ratio equation in geotechnical engineering and compared with test results of bangkok clay and then this study could be verified.

Consolidation Characteristics of Slurry Clay (슬러리점토의 압밀특성)

  • Cheong Gyu Hyang;Cheong Jong Jin;Kim Gyo Jun;Yoon Suk Gun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.1
    • /
    • pp.9-15
    • /
    • 2005
  • Dredged soil from sea has much higher water content than liquid limit of clay and even if small loads apply, it will suffer a great settlement. Therefore it is very difficult to perform a consolidation test with general consolidation apparatus because of high water content. In this study Rowe cell apparatus consolidation tests have been performed with 5 slurry clays of a water content of 100%, 110%, 120%, 133%, and 150%. From the test results the consolidation characteristics such as compression index, secondary compression index, consolidation coefficient, and strain have been investigated with a variation of water content of dredged soil. The equations to get consolidation constants such as a compression index, a coefficient of consolidation, and strain have been proposed with the field water content.

Effects of soil water content and light intensity on the growth of Molinia japonica in montane wetlands in South Korea

  • Choi, Yu Seong;Park, Hyun Jun;Kim, Jae Geun
    • Journal of Ecology and Environment
    • /
    • v.45 no.1
    • /
    • pp.17-23
    • /
    • 2021
  • Background: Montane wetlands are unique wetland ecosystems with distinct physicochemical characteristics, and Molinia japonica often makes dominant communities in montane wetlands in South Korea. In order to figure out the environmental characteristics of M. japonica habitats and the major factors for the growth of M. japonica, field surveys were conducted in five wetlands from September to October 2019. Also, soil was collected at every quadrats installed in surveyed wetlands to analyze the physicochemical features. Results: The relative coverage of M. japonica was higher in low latitude wetlands than in high latitude. Redundancy analysis showed that soil water content had the strongest effect on the growth of M. japonica (F = 23.0, p < 0.001). Soil water content, loss on ignition, and relative light intensity showed a high correlation with the density (R = 0.568, 0.550, 0.547, respectively, p < 0.01) and the coverage of M. japonica (R = 0.495, 0.385, 0.514, respectively, p < 0.01). Soil water content, loss on ignition, and pH were highly correlated with each other. Conclusions: Molinia japonica lives in acidic wetlands at high altitude in temperate zone of low latitude, with peat layer placed on the floor. Also, M. japonica prefers open spaces to secure enough light for photosynthesis. High shoot production of M. japonica resulted in adding new peat material in every year, and this layer enforces the environmental characteristics of M. japonica habitats. This study may provide insights for further understanding of the method how wetlands maintain acidic condition by itself in montane wetlands in temperate zone.