• Title/Summary/Keyword: field water content

Search Result 641, Processing Time 0.03 seconds

Effect of Density on Water Content Reflectometer Measured Field Water Content in Pavement Subgrades (Water Content Reflectometer로 측정한 현장 노상토의 함수량에 대한 다짐도 영향 평가)

  • Park Seong-Wan;Lee Chi-Hun;Hwang Kyu-Young
    • International Journal of Highway Engineering
    • /
    • v.8 no.3 s.29
    • /
    • pp.115-127
    • /
    • 2006
  • The purpose of field monitoring system in KHC-Test Road is to provide the performance data for environmental loadings from pavement surface. Among them, water content reflectometer(WCR) are used for measuring the volumetric water content of pavement subgrades. However, WCRs are not well-calibrated based on the local field conditions. A need therefore exists for improving equations for predicting water content using the proper field and laboratory calibrations. Based on the study performed, calibrations based on various soil characteristics and density conditions are well fitted to the data from fields. So, it is recommended to use the suggested general calibration of WCR to the compacted subgrade soils in test road for predicting the volumetric water content.

  • PDF

PAHs 오염 토양내 오존이동특성;함수율과 수분과 토양 유기물의 영향

  • 배기진;정해룡;최희철
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.140-143
    • /
    • 2001
  • The packed column experiments were conducted with commercial Jumunjin sand(SOM content : 0.01 %) and a field soil(SOM content : 0.08 %) in order to understand the effects of water content and soil organic matter(SOM) on the transport of gaseous ozone in unsaturated soil contaminated with phenanthrene. Water content and SOM content were artificially controlled. As water content increased, earlier breakthrough was observed in the beginning of BTC of ozone, because direct contact of gaseous ozone with SOM and phenanthrene was prevented by water film formed between soil particles and gaseous ozone. The total removal of phenanthrene in Jumunjin sand was not affected by water content which was more than 99% at different water content(4.4, 8, 17.3%). However, the removal in field soil at water content 6.5 % and 20 % was 98% and 80 %.

  • PDF

Effect of Density on WCR Measurement of Water Content in Subgrade Soils (WCR을 이용한 노상토 함수량의 측정 및 밀도 영향 평가)

  • Lee, Chi-Hun;Park, Seong-Wan;Jeong, Jin-Hoon;Kwon, Soon-Min
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1199-1204
    • /
    • 2005
  • The purpose of field monitoring system in KHC-Test Road located at Joongbu-Inland Highway, is to provide the performance data for traffic and environmental loadings from pavement surface. Among them, water content reflectometers(WCR) are used to measure the volumetric water content of subgrades soils used in test roads. However, most of the WCRs are not well-calibrated based on the field conditions. In this study, the laboratory based test is performed at various density conditions to evaluate the volumetric water content in subgrade Soils with a WCR. Based on the laboratory testings, the effect of density on WCR measurement are well evaluated for predicting the volumeric water content.of subgrades soils in KHC-Test road.

  • PDF

Response of Leaf Water Potential and Growth Characteristics to Irrigation Treatment in Soybean

  • Lee, Jeong-Hwa;Seong, Rak-Chun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.2
    • /
    • pp.81-88
    • /
    • 2003
  • Soybeans [Glycine max (L.) Merr.] are frequently exposed to unfavorable environments during growing seasons and water is the most important factor limiting for the production system. The purpose of this study was to determine the leaf water potential changes by irrigation, and to evaluate the relationships of leaf water potential, growth and yield in soybeans. Three soybean cultivars, Hwangkeumkong, Shinpaldalkong 2, and Pungsannamulkong, were planted in growth chamber and field with irrigated treatments. Leaf water potential of three soybean cultivars was positively correlated with leaf water content during vegetative and reproductive growth stages in growth chamber and field experiments. Leaf water potentials measured for three soybean cultivars under growth chamber were higher than those of under field conditions. Higher leaf water potential with irrigated plots under field was observed compared to conventional plots during reproductive growth stages. Leaf water potentials of three soybean cultivars were continually decreased during reproductive growth stages under field and there was no significant difference among them. Number of leaves, leaf water content, pod dry weight, number of seeds and seed dry weight with irrigated plots were higher than those of conventional plots. The results of this study suggested that leaf water potential could be used as an important growth indicator during the growing season of soybean plants.

Reflectance Measurements of Soil Variability

  • Sudduth, K.A.;Hong, S.Y.;Hummel, J.W.;Kitchen, N.R.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1194-1196
    • /
    • 2003
  • Variations in soil physical and chemical properties can affect agricultural productivity and the environmental implications of crop production. These variations are present and may be important at regional, field, and sub-field (precision agriculture) scales. Because traditional measurements are time-consuming and expensive, reflectance-based estimates of soil properties such as texture, organic matter content, water content, and nutrient status are attractive. Soil properties have been related to reflectance measured with laboratory, in-field, airborne, and satellite sensors. Both multispectral and hyperspectral instruments have been used, with both natural and artificial illumination. Varying levels of accuracy have been obtained, with the best results (r > 0.95) using hyperspectral reflectance data to estimate soil organic matter and water content.

  • PDF

Analysis of Saturation and Ground Water level in The Embankment Using TDR Sensor (TDR센서를 이용한 제방의 포화도 및 지하수위 해석)

  • Park, Min-Cheol;Kim, Ki-Yeong;Lee, Jae-Ho;Han, Heui-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.404-415
    • /
    • 2010
  • In this paper, using the TDR sensors, variation of soil water content changes were measured as TDR data. Then filtering technique was determined using Fourier transform. Determine the moisture content of soil and ground water level and tried to determine unsaturated zone. First, variation of water content changes were measured TDR data by indoor experiment. Then as a function of TDR data made for water content of soil. Next, through Acrylic indoor laboratory model experiments, changes in ground water levels and lateral penetration of the field conditions were reproduced in an indoor. Field applicability of the TDR sensor was demonstrated by analysis of this. TDR sensor was installed in the embankment, TDR data were measured by TDR sensor.

  • PDF

Properties of Water Content Variances in Ultra High Flowing Concrete Before and After the Pumping Operation (현장적용 초유동 콘크리트의 펌프압송 전후 단위수량 변화 특성)

  • Kim, Kyoung-Min;Yoo, Jae-Kang;Shin, Hong-Cheol;Choi, Jong-Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.401-404
    • /
    • 2006
  • This study is the part of the investigation of the state of the art in ultra high flowing concrete (UHFC), applied in practical field construction, in order to develop the technology for improving workability. This paper includes a brief introduction of water content variance properties in UHFC before and after the pumping operation. Test showed that water content in all parameters decreased after the pumping. This is due to the increase of an absorption ratio of coarse aggregate by the pressure of the pumping operation. thus decreasing the water content. Therefore it should be considered to find out the possibility, which can improve the workability, suffering from over viscosity by the lower water content, in field construction.

  • PDF

Efficient Dewatering of the Sewage Sludge by Electrodewatering System (전기탈수방법에 의한 하수 슬러지 탈수 특성)

  • Park, Chan-Jung;Lee, Jung-Eun;Ahn, Young-Chull;Shin, Hee-Soo;Lee, Jae-Keun
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.526-531
    • /
    • 2000
  • Application of electrodewatering (EDW) to mechanical dewatering system was studied to decrease water content in the sludge generated from waste water treatment process. Experiments realized the reduction of water content in the sewage sludge. EDW enhancing the conventional filtration by an electric field is an emerging technology with the potential to improve dewatering. In this study, a piston filter press was constructed, the digested sludges were dewatered by EDW under conditions of DC electric field and constant pressure in the piston filter press. Constant electric field from $0{\sim}120\;V/cm$ and constant pressure $98.1{\sim}392.4\;kPa$ were used. The results showed that as electric field was increased the dewatering rates increased and as pressure was increased the dewatering rates decreased. Also as polymer was added the dewatering rates increased. This experiments produced final sludge cake with water content of 60 wt% using EDW, compared with 80 wt% using pressure filtration alone.

  • PDF

Excessive soil water stress responses of sesame (Sesamum indicum L.) and perilla (Perilla frutescens L.) cultivated from paddy fields with different topographic features

  • Ryu, Jongsoo;Baek, Inyeoul;Kwak, Kangsu;Han, Wonyoung;Bae, Jinwoo;Park, Jinki;Chun, Hyen Chung
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.4
    • /
    • pp.749-760
    • /
    • 2018
  • In Korea, the largest agricultural lands are paddy fields which have poor infiltration and drainage properties. Recently, the Korean government has pursued cultivating upland crops in paddy fields to reduce overproduced rice in Korea. For this policy to succeed, it is critical to understand the topographic information of paddy fields and its effects on upland crops cultivated in the soils of paddy fields. The objective of this study was to characterize the growth properties of sesame and perilla from paddy fields with three soil topographic features and soil water effects which were induced by the topographic features of the sesame and perilla. The crops were planted in paddy fields located in Miryang, Gyeongnam with different topographies: mountain foot slope, local valley and alluvial plain. Soil water contents and groundwater levels were measured every hour during the growing season. The paddy field of the mountain foot slope was significantly effective in alleviating wet injury for the sesame and perilla in the paddy fields. The paddy field of the mountain foot slope had a decreased average soil water content and groundwater level during cultivation. Stress day index (SDI) from the alluvial plain paddy field had the greatest values from both crops and the smallest from the ones from the paddy field of the mountain foot slope. This result means that sesame and perilla had the smallest stress from the soil water content of the paddy field on the mountain foot slope and the greatest stress from the soil water content of the alluvial plain. It is important to consider the topography of paddy fields to reduce wet injury and to increase crop yields.

Effects of Soil Water Regimes on Photosynthesis, Growth and Development of Ginseng Plant (Panax ginseng C. A. Meyer) (토양함수량이 인삼의 광합성 및 생육에 미치는 영향)

  • 이성식;양덕조;김요태
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.27 no.2
    • /
    • pp.175-181
    • /
    • 1982
  • This experiment was carried out to study the influence of the various soil water regimes on photosynthesis and growth and development of ginseng plant (3 years). The results were as follows: optimum soil water content for root dry weight and diameter appeared to be 62% of field capacity (13.9% fresh weight basis). The 62% field capacity showed superiority in leaf area, leaf dry weight and also in number of flower, fruit, seed per plant. Net photosynthesis rates per unit area increased with increasing soil water content but net photosynthesis rates per plant were superior in 62% field capacity. Rates of transpiration increased linearly with increasing soil water content but density of stomata decreased with increasing soil water content.

  • PDF