• Title/Summary/Keyword: field variables method

Search Result 536, Processing Time 0.022 seconds

A Heed Assessment of Home Improvement Education for Rural Women -The aspect of educational methods and charactristics of rural women- (농촌주부의 생활개선 교육 요구분석 I -생활개선 교육의 방법에 대한 요구를 중심으로-)

  • 나순애;이한기
    • Korean Journal of Rural Living Science
    • /
    • v.4 no.2
    • /
    • pp.115-125
    • /
    • 1993
  • The purpose of this study was to provide useful data for developing adult education program by assessing educational needs of rural women in home improvement educational contents. Data of this study were collected by interview from 500 home makers who are under 65 years old in 20 areas in Korea. The results are as follows : 1) Winter was favorite season, and good time band during a day was afternoon. Favorite teaching hours were 2∼3 hours a day and 1∼3 days per term. And they wanted village convention center or rural gidance office as educational place, and prefered lecturer is home improvement extension worker. 2) Among relationship between needs for education method and individual variables, is only corelated with rural women's living and educational degree significantly. To improve educational effect, teaching method is more prefered for the participatory education than lecture. It should be provided with exclusive educational place, and be increased professional field workes with obligation and power.

  • PDF

Simulation of square-to-oval single pass rolling using a computationally effective finite and slab element method

  • 이상매;김낙수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1991.04a
    • /
    • pp.237-242
    • /
    • 1991
  • Shape rolling has been studied experimentally by many researchers. As large numbers of process variables are involved and the material flow is difficult to analyze in shape rolling, the use of numerical techniques as an engineering tool becomes extremely attractive. The first numerical approach to the three-dimensional plastic deformation of rolling was to investigate side spread in flat rolling. Oh and Kobayashi conducted a pioneering study in this field by applying an extremum principle for rigid, perfectlyplastic materials combined with the numerical computation. Since then, several other researchers have used three-dimensional finite element method for analysing spread in rolling . In this investigation of shaperolling al the computer simulations of shape rolling were conducted using TASKS. To verify the predictive capabilities of TASKS the first example chosen was square-to-round shape rolling

Analysis and Reconstruction of the 2-D Cylinder Wake Flow Using POD (적합직교분해를 이용한 2차원 실린더 후류 유동장 분석 및 재구성)

  • Rhee, Hui-Nam;Kim, Gi-Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.164-169
    • /
    • 2010
  • Proper Orthogonal Decomposition (POD) is applied to the analysis of 2-dimensional cylinder wake flow. Time histories of flow variables were obtained by the incompressible CFD analysis. By using the method of snapshots the correlation matrix was constructed, and then eigenvalues, POD modes and time coefficients were calculated. Finally the flow field was reconstructed by using a few of the lower POD modes, and compared to the original ones.

Design Optimization of Superconducting Magnet for Maximum Energy Storage (초전도 전자석의 저장에너지 최대화를 위한 최적설계)

  • Kim, Chang-Wook;Lee, Hyang-Beom;Park, Il-Han
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.253-255
    • /
    • 1999
  • In this paper, a shape optimization algorithm of superconducting magnet using finite element method is presented. Since the superconductor loses its superconductivity over the critical magnetic field and critical current density, this material property should be taken into account in the design process. Trial and error approach of repeating the change of the design variables costs much time and it sometimes does not guarantee an optimal design. This paper presents a systematic and efficient design algorithm for the superconducting magnet. We employ the sensitivity analysis based on finite element formulation. As for optimization algorithm, the inequality constraint for the superconducting state is removed by modifying the objective function and the nonlinear equality constraint of constant volume is satisfied by the gradient projection method. This design algorithm is applied to an optimal design problem of a solenoid air-cored superconducting magnet that has a design objective of the maximum energy storage.

  • PDF

Control of Conductive Plate Through Varying the Open Area Size of the Partially, Magnetically Isolated Electrodyamic Wheel (부분 차폐된 동전기 휠의 개방 영역 크기 조절을 통한 전도성 평판의 제어)

  • Jung, Kwang-Suk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.3
    • /
    • pp.230-236
    • /
    • 2012
  • Shielding the air-gap magnetic field of the electrodynamic wheel below a conductive plate and opening the shielding plate partially, a thrust force and a normal force generate on the conductive plate at the open area. But, as only the variable controlling both forces is a rotating speed of the electrodynamic wheel, it is very difficult to control the forces independently by the speed. So, we discuss a novel method controlling the forces effectively through manipulating a size of the open area. The independent control is made possible by virtue of the feature that the relative ratio between both forces is irrelevant to an air-gap length and determined uniquely for a specific rotating speed of the wheel. Therefore, the rotating speed and the size of open area become new control variables. The feasibility of the method is verified experimentally. Specially, the controllable magnetic forces are used in a noncontact conveyance of the conductive plate.

A semi-analytical FE method for the 3D bending analysis of nonhomogeneous orthotropic toroidal shells

  • Wu, Chih-Ping;Li, En
    • Steel and Composite Structures
    • /
    • v.39 no.3
    • /
    • pp.291-306
    • /
    • 2021
  • Based on Reissner's mixed variational theorem (RMVT), the authors develop a semi-analytical finite element (FE) method for a three-dimensional (3D) bending analysis of nonhomogeneous orthotropic, complete and incomplete toroidal shells subjected to uniformly-distributed loads. In this formulation, the toroidal shell is divided into several finite annular prisms (FAPs) with quadrilateral cross-sections, where trigonometric functions and serendipity polynomials are used to interpolate the circumferential direction and meridian-radial surface variations in the primary field variables of each individual prism, respectively. The material properties of the toroidal shell are considered to be nonhomogeneous orthotropic over the meridianradial surface, such that homogeneous isotropic toroidal shells, laminated cross-ply toroidal shells, and single- and bi-directional functionally graded toroidal shells can be included as special cases in this work. Implementation of the current FAP methods shows that their solutions converge rapidly, and the convergent FAP solutions closely agree with the 3D elasticity solutions available in the literature.

Conformable solution of fractional vibration problem of plate subjected to in-plane loads

  • Fadodun, Odunayo O.;Malomo, Babafemi O.;Layeni, Olawanle P.;Akinola, Adegbola P.
    • Wind and Structures
    • /
    • v.28 no.6
    • /
    • pp.347-354
    • /
    • 2019
  • This study provides an approximate analytical solution to the fractional vibration problem of thin plate governing anomalous motion of plate subjected to in-plane loads. The method of variable separable is employed to transform the fractional partial differential equations under consideration into a fractional ordinary differential equation in temporal variable and a bi-harmonic plate equation in spatial variable. The technique of conformable fractional derivative is utilized to solve the resulting fractional differential equation and the approach of finite sine integral transform method is used to solve the accompanying bi-harmonic plate equation. The deflection field which measures the transverse displacement of the plate is expressed in terms of product of Bessel and trigonometric functions via the temporal and spatial variables respectively. The obtained solution reduces to the solution of the free vibration problem of thin plate in literature. This work shows that conformable fractional derivative is an efficient mathematical tool for tracking analytical solution of fractional partial differential equation governing anomalous vibration of thin plates.

BIVARIATE NUMERICAL MODELING OF THE FLOW THROUGH POROUS SOIL

  • S. JELTI;A. CHARHABIL;A. SERGHINI;A. ELHAJAJI;J. EL GHORDAF
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.2
    • /
    • pp.295-309
    • /
    • 2023
  • The Richards' equation attracts the attention of several scientific researchers due to its importance in the hydrogeology field especially porous soil. This work presents a numerical method to solve the two dimensional Richards' equation. The pressure form and the mixed form of Richards' equation are solved numerically using a bivariate diamond finite volumes scheme. Euler explicit scheme is used for the time discretization. Different test cases are done to validate the accuracy and the efficiency of our numerical model and to compare the possible numerical strategies. We started with a first simple test case of Richards' pressure form where the hydraulic capacity and the hydraulic conductivity are taken constant and then a second test case where the hydrodynamics parameters are linear variables. Finally, a third test case where the soil parameters are taken according the Van Gunchten empirical model is presented.

Multivariate Stratification Method for the Multipurpose Sample Survey : A Case Study of the Sample Design for Fisher Production Survey (다목적 표본조사를 위한 다변량 층화 : 어업비계통생산량조사를 위한 표본설계 사례)

  • Park, Jin-Woo;Kim, Young-Won;Lee, Seok-Hoon;Shin, Ji-Eun
    • Survey Research
    • /
    • v.9 no.1
    • /
    • pp.69-85
    • /
    • 2008
  • Stratification is a feature of the majority of field sample design. This paper considers the multivariate stratification strategy for multipurpose sample survey with several auxiliary variables. In a multipurpose survey, stratification procedure is very complicated because we have to simultaneously consider the efficiencies of stratification for several variables of interest. We propose stratification strategy based on factor analysis and cluster analysis using several stratification variables. To improve the efficiency of stratification, we first select the stratification variables by factor analysis, and then apply the K-means clustering algorithm to the formation of strata. An application of the stratification strategy in the sampling design for the Fisher Production Survey is discussed, and it turns out that the variances of estimators are significantly less than those obtained by simple random sampling.

  • PDF

A Comparative Study on the Methodology of Failure Detection of Reefer Containers Using PCA and Feature Importance (PCA 및 변수 중요도를 활용한 냉동컨테이너 고장 탐지 방법론 비교 연구)

  • Lee, Seunghyun;Park, Sungho;Lee, Seungjae;Lee, Huiwon;Yu, Sungyeol;Lee, Kangbae
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.3
    • /
    • pp.23-31
    • /
    • 2022
  • This study analyzed the actual frozen container operation data of Starcool provided by H Shipping. Through interviews with H's field experts, only Critical and Fatal Alarms among the four failure alarms were defined as failures, and it was confirmed that using all variables due to the nature of frozen containers resulted in cost inefficiency. Therefore, this study proposes a method for detecting failure of frozen containers through characteristic importance and PCA techniques. To improve the performance of the model, we select variables based on feature importance through tree series models such as XGBoost and LGBoost, and use PCA to reduce the dimension of the entire variables for each model. The boosting-based XGBoost and LGBoost techniques showed that the results of the model proposed in this study improved the reproduction rate by 0.36 and 0.39 respectively compared to the results of supervised learning using all 62 variables.