• Title/Summary/Keyword: field variables method

Search Result 536, Processing Time 0.023 seconds

Application of Fuzzy Logic for Predicting of Mine Fire in Underground Coal Mine

  • Danish, Esmatullah;Onder, Mustafa
    • Safety and Health at Work
    • /
    • v.11 no.3
    • /
    • pp.322-334
    • /
    • 2020
  • Background: Spontaneous combustion of coal is one of the factors which causes direct or indirect gas and dust explosion, mine fire, the release of toxic gases, loss of reserve, and loss of miners' life. To avoid these incidents, the prediction of spontaneous combustion is essential. The safety of miner's in the mining field can be assured if the prediction of a coal fire is carried out at an early stage. Method: Adularya Underground Coal Mine which is fully mechanized with longwall mining method was selected as a case study area. The data collected for 2017, by sensors from ten gas monitoring stations were used for the simulation and prediction of a coal fire. In this study, the fuzzy logic model is used because of the uncertainties, nonlinearity, and imprecise variables in the data. For coal fire prediction, CO, O2, N2, and temperature were used as input variables whereas fire intensity was considered as the output variable.The simulation of the model is carried out using the Mamdani inference system and run by the Fuzzy Logic Toolbox in MATLAB. Results: The results showed that the fuzzy logic system is more reliable in predicting fire intensity with respect to uncertainties and nonlinearities of the data. It also indicates that the 1409 and 610/2B gas station points have a greater chance of causing spontaneous combustion and therefore require a precautional measure. Conclusion: The fuzzy logic model shows higher probability in predicting fire intensity with the simultaneous application of many variables compared with Graham's index.

Development of the Financial Account Pre-screening System for Corporate Credit Evaluation (분식 적발을 위한 재무이상치 분석시스템 개발)

  • Roh, Tae-Hyup
    • The Journal of Information Systems
    • /
    • v.18 no.4
    • /
    • pp.41-57
    • /
    • 2009
  • Although financial information is a great influence upon determining of the group which use them, detection of management fraud and earning manipulation is a difficult task using normal audit procedures and corporate credit evaluation processes, due to the shortage of knowledge concerning the characteristics of management fraud, and the limitation of time and cost. These limitations suggest the need of systemic process for !he effective risk of earning manipulation for credit evaluators, external auditors, financial analysts, and regulators. Moot researches on management fraud have examined how various characteristics of the company's management features affect the occurrence of corporate fraud. This study examines financial characteristics of companies engaged in fraudulent financial reporting and suggests a model and system for detecting GAAP violations to improve reliability of accounting information and transparency of their management. Since the detection of management fraud has limited proven theory, this study used the detecting method of outlier(upper, and lower bound) financial ratio, as a real-field application. The strength of outlier detecting method is its use of easiness and understandability. In the suggested model, 14 variables of the 7 useful variable categories among the 76 financial ratio variables are examined through the distribution analysis as possible indicators of fraudulent financial statements accounts. The developed model from these variables show a 80.82% of hit ratio for the holdout sample. This model was developed as a financial outlier detecting system for a financial institution. External auditors, financial analysts, regulators, and other users of financial statements might use this model to pre-screen potential earnings manipulators in the credit evaluation system. Especially, this model will be helpful for the loan evaluators of financial institutes to decide more objective and effective credit ratings and to improve the quality of financial statements.

Probabilistic Strength Assessment of Ice Specimen considering Spatial Variation of Material Properties (물성치의 공간분포를 고려한 빙 시험편의 확률론적 강도평가)

  • Kim, Hojoon;Kim, Yooil
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.2
    • /
    • pp.80-87
    • /
    • 2020
  • As the Arctic sea ice decreases due to various reasons such as global warming, the demand for ships and offshore structures operating in the Arctic region is steadily increasing. In the case of sea ice, the anisotropy is caused by the uncertainty inside the material. For most of the research, nevertheless, estimating the ice load has been treated deterministically. With regard to this, in this paper, a four-point bending strength analysis of an ice specimen was attempted using a stochastic finite element method. First, spatial distribution of the material properties used in the yield criterion was assumed to be a multivariate Gaussian random field. After that, a direct method, which is a sort of stochastic finite element method, and a sensitivity method using the sensitivity of response for random variables were proposed for calculating the probabilistic distribution of ice specimen strength. A parametric study was conducted with different mean vectors and correlation lengths for each material property used in the above procedure. The calculation time was about ten seconds for the direct method and about three minutes for the sensitivity methods. As the cohesion and correlation length increased, the mean value of the critical load and the standard deviation increased. On the contrary, they decreased as the friction angle increased. Also, in all cases, the direct and sensitivity methods yielded very similar results.

Towrad the Directions of Environmental Analysis Study of the BB-Direction Method of Gemancy

  • Jung, Sung-Tae
    • Proceedings of the Korean Institute of Landscape Architecture Conference
    • /
    • 2007.10b
    • /
    • pp.127-132
    • /
    • 2007
  • Geomancy(風水, Fengshui in Chinese) is a geographic idea of the Orient that studies a piece of land(a site) to pursue the healthier and more comfortable life for people seeking a harmony with nature, and also, a practical science. Among the theoretical systems of the traditional geomancy handed down by the scriptures, the compass school(理氣論) makes researches into mountains, winds, the currents and amount of water circulation by using luo-pan(羅盤) for finding spot(穴), and it has been considered that it is the objective and logical analysis system of natural environment of selecting a good site by dividing the vitality of the ground into 12 levels of natural circulation principles and judging its direction by means of 88-direction method. In this context, researcher optimized the logic of 88-direction method by the 12-circulation system(胞胎法) of the compass school on the basis of directional theory, then after, using GIS analytical tool, researcher performed comparative analysis between the results from land suitability analysis of the subject site and the resulting value of the directional method in geomancy. The results therefrom indicated that more flexible directions and site could be chosen by applying 88-direction method. For the future research, it is required to apply wider variety of variables to the field study and more careful review of the case study with a focus on the 88-directiont method.

  • PDF

Effect of Ball Milling on Photosensitive Carbon Nanotube Pastes and Their Field Emission Properties (감광성 CNT paste에 대한 저에너지 Ball Milling 처리 효과)

  • Jang, Eun-Soo;Lee, Han-Sung;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.154-154
    • /
    • 2008
  • Although the screen printing technology using photosensitive carbon nanotube (CNT) paste has many advantages such as low cost, simple process, uniform emission, and capability of mass production, the CNT paste needs to be improved further in CNT dispersion, printability, adhesion, electrical conductivity, population of CNT emitters, etc. Ball milling has been frequently employed to prepare the CNT paste as ball milling can mix its ingredients very well and easily cut the long, entangled CNTs. This study carried out a parametric approach to fabricating the CNT paste in terms of low-energy ball milling and a paste composition. Field emission properties of the CNT paste was characterized with CNT dispersion and electrical conductivity which were measured by a UV-Vis spectrophotometer and a 4-point probe method, respectively. Main variables in formulating the CNT paste include a length of milling time, and amounts of CNTs and conductive inorganic fillers. In particular, we varied not only the contents of conductive fillers but also used two different sizes of filler particles of ${\mu}m$ and nm ranges. Among many variations of conductive fillers, the best field emission characteristics occurred at the 5 wt% fillers with the mixing ratio of 3:1 for ${\mu}m$-and nm-sizes. The amount and size of fillers has a great effect on the morphology, processing stability, and field emission characteristics of CNT emitter dots. The addition a small amount of nm-size fillers considerably improved the field emission characteristics of the photosensitive CNT paste.

  • PDF

ABC optimization of TMD parameters for tall buildings with soil structure interaction

  • Farshidianfar, Anooshiravan;Soheili, Saeed
    • Interaction and multiscale mechanics
    • /
    • v.6 no.4
    • /
    • pp.339-356
    • /
    • 2013
  • This paper investigates the optimized parameters of Tuned Mass Dampers (TMDs) for vibration control of high-rise structures including Soil Structure Interaction (SSI). The Artificial Bee Colony (ABC) method is employed for optimization. The TMD Mass, damping coefficient and spring stiffness are assumed as the design variables of the controller; and the objective is set as the reduction of both the maximum displacement and acceleration of the building. The time domain analysis based on Newmark method is employed to obtain the displacement, velocity and acceleration of different stories and TMD in response to 6 types of far field earthquakes. The optimized mass, frequency and damping ratio are then formulated for different soil types; and employed for the design of TMD for the 40 and 15 story buildings and 10 different earthquakes, and well results are achieved. This study leads the researchers to the better understanding and designing of TMDs as passive controllers for the mitigation of earthquake oscillations.

A Numerical Study on the Triboelectrostatic Separation of PVC Materials From Mixed Plastics for Waste Plastic Recycling

  • Ha, Man-Yeong;Jeon, Chung-Hwan;Park, Doo-Seong;Park, Hae-Jin
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1485-1495
    • /
    • 2003
  • We investigate the triboelectrostatic separation of polyvinylchloride (PVC) from mixed plastics in the laboratory scale triboelectrostatic separation system. The flow and electric fields in the precipitator are obtained from the numerical solution of finite volume method. Using these flow and electric fields, we solved the particle motion equation considering the inertia, drag, gravity and electrostatic forces acted on the particles. The particle trajectories are obtained using a Lagrangian method as a function of different important variables such as Reynolds number, Stokes number, electrostatic force, electric charge and electric field distribution, inclined angle of plane electrodes, particle rebounding, particle charge decay rate after impact on the electrode surface, etc., in order to determine the optimal design conditions. The present predicted results for the cumulative yield represent well the experimental ones.

Theory and Analysis Method of Tunnel Convergence (터널 내공변위의 이론과 계측결과의 분석)

  • 김호영;박의섭
    • Tunnel and Underground Space
    • /
    • v.3 no.1
    • /
    • pp.80-95
    • /
    • 1993
  • Convergence measurements play very important role in the assessment of stability of a tunnel and of the economics of rock reinforcements. The characteristics of convergences are both due to the face advance effect and the time-dependent behaviour of rocks. As the convergence law can be modeled as a specific function of two variables of distance and time, we can determine the type of function and the related parameters from the field measurements. By using the regression method based on the Levengberg-Marquardt algorithm, an analysis of convergence of two different tunnels and one numerical example is described. It is shown that the convergence can be modeled as following function, C(x)=a{1-exp(-bx)} or C(t)=a{1-exp(-bt)} in case of a tunnel excavated in elastic rocks, in case of elasto-plastic or over stressed rocks.

  • PDF

Development of Design Software for MEMS integrating Commercial Codes: DS/MEMS (상용코드 통합을 통한 미소기전집적시스템의 설계 소프트웨어 개발:DS/MEMS)

  • 허재성;이상훈;곽병만
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.11
    • /
    • pp.180-187
    • /
    • 2003
  • A CAD-based seamless design system for MEMS named DS/MEMS was developed which performs coupled-field analysis, optimal and robust design. DS/MEMS has been developed by means of integrating commercial codes and inhouse code-SolidWorks, FEMAP, ANSYS and CA/MEMS. This strategy results in versatility that means to include various analysis model, corresponding analyses and approximated design sensitivity analysis and user friendliness that design variables are taken to be selectable directly from a CAD model, that the problem is formulated under a window environment and that the manual job during optimization process is almost eliminated. DS/MEMS works on a parametric CAD platform, integrating CAD modeling, analysis, and optimization. Nonlinear programming algorithms, the Taguchi method, and response surface method are made available for optimization. One application problem is taken to illustrate the proposed methodology and show the feasibility of DS/MEMS as a practical tool.

Steering Controller of the Outdoor Autonomous Mobile Robot using MR Sensors

  • Son, Seok-Jun;Kim, Tae-Gon;Kim, Jeong-Heui;Park, Jin-Kyu;Youngcheol Lim;Kim, Eui-Sun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.32.6-32
    • /
    • 2001
  • This paper describes the steering control and geomagnetism cancellation for an autonomous mobile robotusing MR sensors. The magnetic-resistive (MR) sensor obtains the vector summation of the magnetic fields from embedded magnets and the Earth. The robot is controlled by the magnetic fields from embedded magnets. So, geomagnetism is the disturbance in the steering control system. In this paper, we propose a new method of the sensor arrangement in order to remove the geomagnetism and robotbody interference. The proposed method uses two MR sensors located in a level plane and the steering controller has been developed. The controller has three input variables (dBx, dBy, dBz) using the measured magnetic field difference, and an output variable (the steering angle) ...

  • PDF