• Title/Summary/Keyword: field load test

Search Result 884, Processing Time 0.034 seconds

A study on the Implementation of a Remote Control System for Peak Load Clipping (첨두부하 억제를 위한 원격부하제어시스템 개발 및 적용에 관한 연구)

  • Cho, Seon-Ku;Moon, Hong-Suk;Yoon, Kap-Koo;Lee, Won-Bin
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.165-168
    • /
    • 1995
  • The recent rapid growth of air conditioning load has become a major reason of peak load increase in summer. In connection with this, we surveyed the load management projects of utilities world-wide and their detailed activities. This study is to develop a remote load control system using computer and radio communications. We finished the field-test of this system on August 1995 in Seoul area. During the field-test, the remote load control of air conditioners was proved to be well-timed. Two control modes, group control and all control, are available for the user to select. The transmission reliability of the load control signal was very good and the functions of system hardware as well as the software were excellent. So we confirmed the applicability of the load control system including the paper communication network. In this paper, detailed information on the system functions and experimental results are described.

  • PDF

Field Test Study of Photovoltaic Generation System for Medium and Small-Sized Buildings (중소형 건물 태양광발전시스템의 실증 연구)

  • Kim, Eung-Sang;Kim, Seul-Ki
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.561-565
    • /
    • 2006
  • The paper presents a method of assessing the adequate tapaclty of photovoltaic generation systems for public buildings based on analysis of load variation patterns of customers. When PV systems are installed for supplying power for the customer load, reverse power relay is required by the guideline to be installed at the point of common coupling with the power network. The suggested method analyzes daily, weekly and monthly load demand of the customer that Irishes PV system installation, and determines the appropriate rating of the PV system for preventing PV generation from exceeding the customer demand. This work is expected to support renewable energy dissemination projects of public organizations.

  • PDF

A Case Study on the Effect of Damaged Expansion Joint for Safety Assessment of Highway Bridges

  • Kim, Kwang-Il;Chai, Won-Kyu;Lee, Myeong-Gu;Son, Young-Hyun
    • International Journal of Safety
    • /
    • v.9 no.2
    • /
    • pp.16-21
    • /
    • 2010
  • In this study, the variations of transformed impact factors and load carrying capacity of highway bridges measured from the state of expansion joint are evaluated. the field loading tests were performed on the highway bridge with damaged expansion joint to investigate the variation of the load carrying capacity. From the field loading tests in case that damaged expansion joint exist or do not exist, the static displacements and dynamic displacements were measured, and TIF were calculated, respectively. dynamic test is performed in order to estimate dynamic displacement and TIF according to the level of damage of expansion joint. From the results of TIF, the load carrying capacity of highway bridges with damaged expansion joint were estimated.

Comparative field tests on uplift behavior of straight-sided and belled shafts in loess under an arid environment

  • Qian, Zeng-zhen;Lu, Xian-long;Yang, Wen-zhi;Cui, Qiang
    • Geomechanics and Engineering
    • /
    • v.11 no.1
    • /
    • pp.141-160
    • /
    • 2016
  • This study elucidates the uplift behaviors of the straight-sided and belled shafts. The field uplift load tests were carried out on 18 straight-sided and 15 belled shafts at the three collapsible loess sites under an arid environment on the Loess Plateau in Northwest China. Both the site conditions and the load tests were documented comprehensively. In general, the uplift load-displacement curves of the straight-sided and belled shafts approximately exhibited an initial linear, a curvilinear transition, and a final linear region, but did not provide a well defined peak or asymptotic value of the load, and therefore their uplift resistances should be interpreted from the load test results using an appropriate criterion. Nine representative uplift resistance interpretation criteria were used to define the "interpreted failure load" for each of the load tests, and all of these interpreted uplift resistances were normalized by the failure threshold, $T_{L2}$, obtained using the $L_1-L_2$ method. These load test data were compared statistically and graphically. For the straight-sided and belled shafts, the normalized uplift load-displacement curves were respectively established by the plots that related the mean interpreted uplift resistance ratio against the mean displacement at the corresponding interpreted criteria, and the comparisons of the normalized load-displacement curves were made. Specific recommendations for the designs of uplift belled and straight-sided shafts in the loess were given, in terms of both capacity and displacement.

Application of in-situ testing Methods for Bearing Capacity Estimation of Railroad Roadbed (철도 노반의 지지력 평가를 위한 현장 시험법 적용성 연구)

  • Park, Chang-Woo;Choi, Chan-Yong;Lee, Il-Wha;Kim, Dae-Sang
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.866-875
    • /
    • 2006
  • The field plate load test a good potential for determining modulus since it measures both plate pressure and settlement. However, because The field plate load test is expensive and takes plenty of time for operation, it is very difficult to figure out the test characteristics of railroad roadbed in detail. For faster and economical operation, the Dynamic Cone Penetrometer(DCP) and the Light Falling Weight Deflectometer(LFWD) have been utilized for estimating the bearing capacity of railroad roadbed. The objective of this study is to determine the relationship between the test(PLT, DCP, LFWD) of the railroad roadbed in Korea. The DCP test and LFWD test for evauluating the strength of railroad roadbed materials produced in Korea are presented in this paper.

  • PDF

Performance of Rock-socketed Drilled Shafts in Deep Soft Clay Deposits

  • Kim, Myung-Hak
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.409-429
    • /
    • 2006
  • In designing rock-socketed drilled shaft, bearing capacity evaluation is very important because the maximum values of base and side resistance are not generally mobilized at the same value of displacement, FHWA and AASHTO code suggest different ultimate bearing capacity formular according to rock type and shaft settlement. In domestic code suggest base resistance and side resistance can be added on condition that after confirming the result of field load test with axial load transfer test. This paper shows that static load test and hi-directional load test result analysis of deep rock-socketed drilled shaft in three different sites. Load-settlement curve, t-z, and q-w curve in rock-socketed part were calculated and compared. t-z curve in weathered and soft rock showed no deflection softening behavior in pretty large strain (about 2-3% of diameter). Ultimate resistance could be the summation of side resistance and base resistance in rock-socketed drilled shaft in domestic sites.

  • PDF

Field Adaptability Test for the Full Load Rejection of Nuclear Turbine Speed Controllers using Dynamic Simulator

  • Choi, In-Kyu;Kim, Jong-An;Woo, Joo-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.7
    • /
    • pp.67-74
    • /
    • 2009
  • This paper describes the speed control functions of the typical steam turbine speed controllers and the test results of generator load rejection simulations. The goal of the test is to verify the speed controller's ability to limit the steam turbine's peak speed within a predetermined level in the event of generator load loss. During normal operations, the balance between the driving force of the steam turbine and the braking force of the generator load is maintained and the speed of the turbine-generator is constant. Upon the generator's load loss, in other word, the load rejection, the turbine speed would rapidly increase up to the peak speed at a fast acceleration rate. It is required that the speed controller has the ability to limit the peak speed below the overspeed trip point, which is typically 110[%] of rated speed. If an actual load rejection occurs, a substantial amount of stresses will be applied to the turbine as well as other equipments, In order to avoid this unwanted situation, not an actual test but the other method is necessary. We are currently developing the turbine control system for another nuclear power plant and have plan to do the simulation suggested in this paper.

A Numerical Analysis Study for Estimation of Ultimate Bearing Capacity and An Analysis of the High Capacity Bi-directional Pile Load Tests of the Large-diameter Drilled Shafts (대구경 현장타설말뚝의 대용량 양방향 말뚝재하시험 분석 및 극한지지력 추정을 위한 수치해석 연구)

  • Nam, Moonsuk;Kim, Sangil;Hong, Seokwoo;Hwang, Seongchun;Choi, Yongkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.10
    • /
    • pp.63-72
    • /
    • 2011
  • The high capacity bi-directional pile load test is an optimum pile load test method for high-rised buildings. Especially, a high pressure and double-acting bi-directional pile load testing, a special type of the high capacity bi-directional pile load test, is the most practical way to overcome limitations of loading capacities and constraints of field conditions, which was judged to be a very useful test method for requiring high loading capacities. Total of 2 high capacity bi-directional pile load tests(P-1 and P-2) were conducted in high-rised building sites in Korea. Based on the field load test results, the sufficiency ratio of loading capacities to design loads for P-1 and P-2 were 3.3 and 2.1, respectively. For P-2, the load test could not verify the design load if 1-directional loads applied slightly smaller than the actual applied load. Also, high capacity bi-directional pile load tests were difficult to determine an ultimate state of ground or piles, although the loads were applied until their maximum loads. Hence, finite element analyses were conducted to determine their ultimate states by calibrating and extrapolate with test results.

A development of direct load control system for air-conditioner (원격제어 에어컨 개발 보급현황 및 향후전망)

  • Gang, Won-Gu;Kim, Choong-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2446-2448
    • /
    • 2001
  • In addition to the stabilization of electricity supply and the quality management of electricity, load balance has been an important strategy for achieving high quality load management. Among many techniques for load management, direct load management has been actively studied and applied for increasing the efficiency of power facility and suppressing peak load. In Korea, the highest peak load is demanded in summer rather than in winter, and almost 50% of the peak load comes from cooling load. Currently, applicable systems are limited to air conditioners that have the cooling capacity less than 2kW. This paper describes the development of remote controlled air conditioners and the result of the field test of the new type air conditioner. The technical specification based on the test will be applied to the new model of the remote controlled air conditioner. The wide distribution of the air conditioners to the public will be helpful to control peak demand due to cooling load in summer time. Financial investment to generating, transmission, distribution facilities will be decreased from flatting the seasonal power load.

  • PDF

Experimental Study on the Load Carrying Performance and Driving Torque of Gas Foil Thrust Bearings (가스 포일 스러스트 베어링의 하중지지 성능 및 구동 토크에 관한 실험적 연구)

  • Kim, Tae Ho;Lee, Tae Won;Park, Moon Sung;Park, Jungmin;Kim, Jinsung;Jeong, Jinhee
    • Tribology and Lubricants
    • /
    • v.31 no.4
    • /
    • pp.141-147
    • /
    • 2015
  • Gas foil thrust bearings (GFTBs) have attractive advantages over rolling element bearings and oil film thrust bearings, such as oil-free operation, high speed stability, and high-temperature operation. However, GFTBs have lower load carrying capacity than the other two types of bearings owing to the inherent low gas viscosity. The load carrying capacity of GFTBs depends mainly on the compliance of the foil structure and the formed hydrodynamic wedge, where the gas pressure field is generated between the top foil and the thrust runner. The load carrying capacity of the GFTBs is very important for the suitable design of oil-free turbomachinery with high performance. The aim of the present study is to identify the characteristics of the load carrying performance of GFTBs. A new test rig for the experimental measurements is designed to provide static loads up to 800 N using a pneumatic cylinder. The maximum operating speed of the driving motor is 30,000 rpm. A series of experimental tests—lift-off test, static load performance test, and maximum load capacity test—estimate the performance of a six-pad GFTB, in terms of the static load, driving torque, and temperature. The maximum load capacity is determined by increasing the static load until the driving torque rises suddenly with a sharp peak. The test results show that the torque and temperature increase linearly with the static load. The estimated maximum load capacity per unit area is approximately 80.5 kPa at a rotor speed of 25,000 rpm. The test results can be used as a design guideline for GFTBs for realizing oil-free turbomachinery.