• Title/Summary/Keyword: field load test

Search Result 883, Processing Time 0.021 seconds

A Study on the Long-term Mechanical Properties Under Static and Cyclic State of Composite Insulators for Transmission Lines (송전용 고분자 애자의 정적 및 동적인 상태에서 장기 기계적 특성 연구)

  • Kim, S.Y.;Kim, Y.S.;Hong, J.Y.;Park, W.K.
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.869-871
    • /
    • 1998
  • The extensive use of composite insulators for transmission lines can ultimately be justified only on long-term qualification tests. The actual load working on the insulator in the field is not static load but cyclic load. So in this paper, we discussed an examination of aging degradation by mechanical performance of composite insulators under static tension load and cyclic tension load. and also described useful approaches for analyzing their long term performance so as to develop reliable composite insulators. The static and cyclic tension load-time test data were examined by Weibull distribution for their capability of presuming long term performance. It was found that cyclic tension loads were more severe than static tension loads. The results also indicate that it may be relevant for an user to select composite insulators on basis of their performance under cyclic tension loads than static tension loads.

  • PDF

An Experimental Study on The Development of Fold Concrete Permanent Form producible at Field (현장가공이 가능한 영구거푸집 개발에 관한 실험적 연구)

  • 김형남;최창기;김우재;김성식;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.805-808
    • /
    • 1999
  • According to the results of this research, Production of Fold Concret Permanent-Form, was found to be possible by Concrete. The FCP-Form (Fold Concret Permanent-Form) Concrete had Compress strength 300kg/$\textrm{cm}^2$ and banding strength 120kg/$\textrm{cm}^2$. FCP-Form Model was made by the result of the first research. There was no mimute-crack on beam form and The outer surface of form was very smooth, and Those qualities it were made possible hand-made by experiment. With these results, The Production of FCP-Form seemed possible. In the banding load test, P-S showed increase of maxim load 12% than P-R. At the first stage of minute crack, under continuing loading size of crack increased. These phenomena seemed to be based on contribution of stress of inner bars in FCP-Form. In the test of defection. P-S shower about 10% banding load increase than P-R. FCP-Form Concrete was found to be efficient in compressibleness, defection, safety and use of material.

  • PDF

Start-up Analysis and Commissioning Test of LCI System for 183MW Large Synchronous Machine (183MW 대용량 동기기 구동 LCI 시스템 기동운전 분석 및 시험)

  • Ryu, Hoseon;Cha, Hanju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.5
    • /
    • pp.626-631
    • /
    • 2013
  • Gas turbine systems are applied extensively in energy supplies to cover peak load requirements. The gas turboset must be accelerated by starting device up to 60%~80% of rated speed to ignite the gas turbine. Recently, the most favorable and economical starting device is the LCI(Load Commutated Inverter). The LCI runs up the gas turboset by feeding the generator as a synchronous motor. In this paper, we discuss in detail the driving principles and features of 183MW gas turbine system. During field application of LCI system, many tests have been conducted and the results were described in this paper. The test results will be considered as the important resources for development in future.

A Field Test Study on Skin Friction Behavior of Driven Steel Piles (항타강관말뚝의 주면마찰저항 특성에 관한 현장실험 연구)

  • Lee, Min-Hee;Lee, Chung-Sook;Jung, Chang-Kyu;Choi, Yong-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.575-582
    • /
    • 2005
  • Static pile load tests for three instrumented driven steel pipe pies were performed. Based on the distributions of pile axial loads along the pile depth, Characteristics of unit skin friction were analyzed.

  • PDF

Bearing capacity analysis of stone column in soft clay soils (연약점토 지반에 있는 STONE COLUMN의 지지력 산정)

  • 이윤주
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.141-148
    • /
    • 1996
  • Use of stone column for deep ground treatment in soft clay soils is an effective method. The stone column significantly increases load carrying capacity of the soft clay soil. A analysis method for bearing capacity of stone column in soft clay soil is developed. The capacity made by developed method are compared wity observed values from field load test and a reasonable correlation is noted.

  • PDF

Fatigue Durability Analysis and Evaluation for Straighted Type Exhaust System of Automobile (자동차용 직선화 배기시스템의 피로내구 해석 및 평가)

  • Park Sejong;Suh Hocheol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.147-152
    • /
    • 2005
  • The exhaust system of automobile is faced with random or spectrum types of fatigue loads during usage life and so needs to be closely estimated for quality and performance to have enough certainty on design endurance lift during preliminary design process. Structural operation conditions, operation load history, property of material and manufacturing process etc. should be considered by performing experiment approach. Using the software program for predicting fatigue life quickly and exactly in preliminary design stage saves plenty of time and cost generated by fatigue tests. In this paper, fatigue life prediction was performed on the basis of fatigue analysis using MSC/FATIGUE and load data from field test and the life of development items was estimated and compared through the results.

Evaluation of Compaction Quality Control applied the Dynamic Cone Penetrometer Test based on IoT (다짐품질관리를 위한 IoT 기반 DCPT 적용 평가)

  • Jisun, Kim;Jinyoung, Kim;Namgyu, Kim;Sungha, Baek;Jinwoo, Cho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.4
    • /
    • pp.1-12
    • /
    • 2022
  • Generally, the plate load test and the field density test are conducted for compaction quality control in earthwork, and then additional analysis. Recently developed that the DCPT (Dynamic Cone Penetration Test) equipment for smart compaction quality control its the system are able to get location and real-time information about worker history management. The IoT-based the DCPT system improved the time-cost in the field compared traditional test, and the functions recording and storage of the DPI (Dynamic Cone Penetration Index) were automated. This paper describes using these DCPT equipment on in-situ and compared to the standards of the DCPT, and the compaction trend had be confirmed with DPI as the field test data. As a result, the DPI of the final compaction decreased by 1.4 times compared to the initial compaction, confirming the increase in the compaction strength of the subgrade compaction layer 10 to 14 cm deep from the surface. A trend of increasing compaction strength was observed. This showed a tendency to increase the compaction strength of the target DPI proposed by MnDOT and the results of the existing plate load test, but there was a difference in the increase rate. Therefore, additional studies are needed on domestic compaction materials and laboratory conditions for target DPI and correlation studies with the plate load tests. If this is reflected, it is suggested that DCPT will be widely used as smart construction equipment in earthworks.

A Study on Estimation of Fatigue Life of Aged Continuous Welded Rail using the Field Test (현장측정을 통한 노후 레일의 피로수명 평가에 관한 연구)

  • Kong, Sun-Yong;Sung, Deok-Yong;Kim, Jun-Hyung;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.352-364
    • /
    • 2007
  • It is essential to reduce track maintenance costs and to extend the periodic replacements of continuous welded rails based on accumulated passing tonnage. As recently train load decrease and rail joints wear down less, the periodic replacements of continuous welded rails can be extended. There are many kinds of rail damage like squat, head-check and corrugation. These can be taken nondestructive or naked eye test. So the periodic replacements of continuous welded rails based on accumulated passing tonnage were examine with focusing on a crack of rail bottom of continuous welded rail. Therefore, this study measure dynamic response of track by metro train load, it compute impact coefficient and track spring coefficient for estimating a condition of actual track system. Also, it is converted the measured stress waveform into stress frequency histogram by the rain-flow counting methods, and then the equivalence of stress is calculated. As apply s-n curve of a new welded rail, accumulated fatigue damage ratio of laid rail and remaining service lives is estimated. This study suggest a plan of the periodic replacements of continuous welded rails based on accumulated passing tonnage classified by the types of track system.

  • PDF

Evaluating damage scale model of concrete materials using test data

  • Mohammed, Tesfaye A.;Parvin, Azadeh
    • Advances in concrete construction
    • /
    • v.1 no.4
    • /
    • pp.289-304
    • /
    • 2013
  • A reliable concrete constitutive material model is critical for an accurate numerical analysis simulation of reinforced concrete structures under extreme dynamic loadings including impact or blast. However, the formulation of concrete material model is challenging and entails numerous input parameters that must be obtained through experimentation. This paper presents a damage scale analytical model to characterize concrete material for its pre- and post-peak behavior. To formulate the damage scale model, statistical regression and finite element analysis models were developed leveraging twenty existing experimental data sets on concrete compressive strength. Subsequently, the proposed damage scale analytical model was implemented in the finite element analysis simulation of a reinforced concrete pier subjected to vehicle impact loading and the response were compared to available field test data to validate its accuracy. Field test and FEA results were in good agreement. The proposed analytical model was able to reliably predict the concrete behavior including its post-peak softening in the descending branch of the stress-strain curve. The proposed model also resulted in drastic reduction of number of input parameters required for LS-DYNA concrete material models.

A Study on the Applicability of the Reinforced Railroad Roadbed Method by Field Test (현장부설시험을 통한 철도 강화노반공법의 적용성에 관한 연구)

  • 황선근;신민호;이성혁;최찬용;이시한
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.215-222
    • /
    • 2000
  • The reinforced roadbed should have the ability to spread out the load intensity lower than the bearing capacity of the subgrade of track structure as well as to prevent the softening of roadbed by providing appropriate stiffness in the roadbed, thus fully supports the track structures. Full scale reinforced roadbeds with several different types of monotoring sensors was also constructed to evaluate the performance of each reinforced roadbed through the continuous monitoring while the train operation. In this study, Field tests such as PLT, SASW were also carried out at each reinforced roadbed. The results of the field and lab tests, installation and calibration of sensors, as well as construction condition of the reinforced roadbed are presented.

  • PDF