• Title/Summary/Keyword: field load test

Search Result 883, Processing Time 0.023 seconds

An Experimental study on field application of Permanent form (비탈형 영구거푸집의 현장 적용을 위한 실험적 연구)

  • 정근호;김우재;이영도;정재영;정상진
    • Journal of the Korea Institute of Building Construction
    • /
    • v.1 no.1
    • /
    • pp.143-150
    • /
    • 2001
  • Permanent-Form is one of system forms for reducing human labor, work costs, oscillation, noise, construction wastes and so on. Permanent-Form is made from precast method in facilities, and carried in construction site to assemble with no demolding. The biggest expense to produce permanent-Form is about manufacturing mold. This papers about structural efficiency evaluation, construction efficiency test. The result of this study is below. (1) In the compressive strength test of column. Fly ash specimen and polymer specimen's strength developed as each 8%, 14% to comparison with standard specimen. The reason of this result from form section area increase and form's reinforcing bar (2) The Degree of column crack in permanent form is lower than another one's The glass fiber's fiber reinforcement effect brings like this. (3) In the flexural load test of beam, the early crack load and maximum load of permanent form use specimen showed 20% higher than standard specimen's. (4) In field application experiment, an constructional error is satisfied with the allowable margin of error, $\pm$5mm (5) When the concrete is placed into the form inside, The transformation degree of permanent form is lower than plywood form's. (6) The concrete packing ability of permanent form is satisfactory. (7) The bonding strength of permanent form shows enough strength - 6kgf/$\textrm{cm}^2$.

  • PDF

Study on the Fractures Types of PHC Pile by Impact Load of Follower (보조말뚝의 충격하중에 의한 PHC말뚝의 파손유형 고찰)

  • Seo, Dong-Nam;Choi, Sang-Ho;Kim, Jin-Sik;Kim, Min-Kab;Lee, Dong-Hyeon;Cho, Seong-Jun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.144-145
    • /
    • 2021
  • This study analyzed the cases of cracks in piles due to the use of followers under construction conditions where water exists inside the piles, and confirmed whether the piles were cracked through a field test simulating the construction conditions in which water pressure inside the piles was generated by a hammer. According to the construction case, under the construction condition where the pile length is 20% to 30% shorter than the drilled length, about 80% cracks occur, so there is a high possibility of cracking due to water inside the pile. A field test was conducted to confirm the type of pile failure due to hammer under the construction condition in which water exists inside the pile. The pile head was not destroyed by the compressive load, and one or more longitudinal cracks occurred along the PC steel wire. The closed end pile generates water pressure by hammer. the follower and cushion(compression plywood) must be drilled at least 0.4D. It is expected that improved quality control will be possible as the water pressure inside the pile is reduced.

  • PDF

Field Performance Test and Prediction of Power Consumption of a Centrifugal Chiller (현장에서 운전중인 터보냉동기의 성능 측정과 전력 소비량 예측)

  • Jang, Yeong-Su;Sin, Yeong-Gi;Kim, Yeong-Il;Baek, Yeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.12
    • /
    • pp.1730-1738
    • /
    • 2001
  • This paper presents an overview of testing and analyzing field performance of a centrifugal chiller which has a rated capacity of 200 RT(703 kW). Field data of a chiller installed in the cleanroom research building of KIST has been collected far performance analysis. The operating data included start-up, shut-down, and quasi-static state where cooling capacity and compressor power consumption varied cyclically. It was found that the steady-state thermodynamic model could be applied to relate the cooling capacity and COP under quasi-static conditions. The results led to finding the required cooling load pattern and a possible energy saving method. This study provides a method of evaluating performance of a large capacity centrifugal chiller in which field test is necessary.

Load Transfer Mechanism of Drilled Shafts in Weathered Rock (풍화된 암반에 근입된 현장타설말뚝의 하중전이 기구)

  • Kwon, Oh-Sung;Cho, Sung-Min;Jung, Sung-Jun;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.57-64
    • /
    • 2005
  • Since the allowable bearing capacities of piles in weathered/fractured rock are mainly governed by settlement, the load-displacement behavior of the rock socketed pile should be well known. To predict pile head settlement at the design stage, the exact understanding of the load-transfer mechanisms is essential. Therefore, in this research, the load-transfer mechanisms of drilled shaft socketed into weathered rock was investigated. For that, 5 cast-in-place concrete piles with diameters of 1,000 mm were socketed into weathered gneiss. The static axial load tests and the load-transfer measurements were performed to examine the axial resistant behavior of the piles. A comprehensive field/laboratory testing program on weathered rock at the field test sites was also performed to describe the in situ rock mass conditions quantitatively. And then, the effect of rock mass condition on the load transfer mechanism was investigated. The side shear resistance of the pile in moderately weathered rock reached to yielding point at a few millimeter displacements, and after that, the rate of resistance increment dramatically decreased. However, that in the highly /completely weathered rock did not show the obvious yielding point, and gradually increased showing the hyperbolic pattern until with the relatively high displacement (>10 mm). The end bearing-displacement curves showed linear increase at least until with the base displacement of approximately 10 mm, regardless rock mass conditions.

  • PDF

Ride Performance Evaluation of a Heavy Truck Semi-active Cabin Air Suspension System (대형 트럭 반능동형 캐빈 공기 현가시스템의 승차감 성능 평가 연구)

  • Lee, Ji-Sun;Choi, Gyoo-Jae;Lee, Kwang-Heon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.77-83
    • /
    • 2008
  • Semi-active cabin air suspension system improves driver's comfort by controlling the damping characteristics in accordance with driving situation. For the driver's comfort evaluation, test procedure has the two methodologies which are filed test and lab test. A field test method has a drawback. It requires a lot of time and money on repetitive test, due to the sensitivity of field test. On the other hand, the test with six axes simulation table at laboratory can obtain the repeatability of test, better than the field test method. In this paper, the procedures of ride performance test and control logic tuning with the table are presented. Drive files of the table can be represented with the almost same input condition as field test data. According to the result from the comparative test using six axes simulation table between passive and semi-active system by making ECU logic tuning, the RMS acceleration of semi-active cabin air suspension system was reduced by 29.6% compared with passive system.

S-N Curve Deduction of a KTX High-Speed Train Structure for an Accelerated Life Testing (가속수명시험을 위한 KTX고속열차 구조물의 S-N 선도 추정)

  • Jung, Dal-Woo;Choi, Nak-Sam;Park, Su-Han
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.4
    • /
    • pp.388-395
    • /
    • 2009
  • An accelerated fatigue test is essentially required to maintain the reliability of the actual structures of KTX under operation conditions. However, actual fatigue life cannot be obtained because the conventional fatigue tests are not adequate to the real load conditions. Moreover foreign component makers have not provided data of the loading stresses (S) versus cycles at the failure (N). In this study, we suggested a deduction method of the S-N curve for establishing an accelerating test under various load levels. Load history was acquired from the field tests. A Rainflow method was used on the cycle counting of the field load data. After that, an S-N curve was obtained through the iteration process under the condition that the damage index satisfies to 1 in the Miner's rule. The deduced S-N curve was applied to the performance evaluation of Korean-made sealed knuckles compared with imports.

Development of an In Situ Direct Shear Test Apparatus and Its Field Application (현장직접전단시험기의 개발 및 현장적용에 관한 연구)

  • Kim, Yong-Phil;Lee, Young-Kyun;Lee, Sung-Kook;Um, Jeong-Gi
    • Tunnel and Underground Space
    • /
    • v.21 no.3
    • /
    • pp.181-191
    • /
    • 2011
  • It is very difficult to prepare a lab. test specimen from weak rock masses affected by faults, highly fractured zone or weathered zone. In conventional method of in situ direct shear test a rock block is sheared inside galleries, where reactions for the hydraulic jacks are available. A new in situ direct shear test apparatus has been developed in this study to perform the test inside galleries as well as open pit conditions. The apparatus is composed of normal and shear reaction plates including load transfer plates, hydraulic cylinder systems, load cells, multistage shear boxes with fixing devices, and needle rollers. Maximum size of the test block is $400{\times}400{\times}460$ mm, and procedures of the test block preparation has been suggested. To explore the field applicability of in situ direct shear test apparatus, proper test block site was investigated by extensive geological field survey. In situ direct shear test has been successful in producing most of information related to strength and deformability of the weak rock.

Application of the New Degree of Compaction Evaluation Method (새로운 다짐도 평가기법의 적용성에 관한 연구)

  • Park, Keun-Bo;Kim, Ju-Hyong
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.2
    • /
    • pp.5-14
    • /
    • 2012
  • CMV(Compaction Meter Value) obtained from compaction results using an accelerometer, which measures the impact on the ground and the resilient force of the ground, is compared with the other degree of compaction through regression analysis. As a result, there is no correlation between results from conventional test methods (e.g., the plate load test and field density test) and the degree of compaction evaluated by either the Geogauge or the dyanamic cone penetrometer. To assess the possibility of replacing the conventional test methods with new test methods using CMV, several degrees of compaction tests were carried out. Those results show that the CMV obtained from compaction results using an accelerometer can be used as a substitute for conventional methods to evaluate the stiffness characteristics of compacted soil.

A Study on Rolling Friction Characteristics of Magneto-Rheological Elastomer under Magnetic Fields (자기장 영향에 따른 자기유변탄성체의 구름 마찰 특성 연구)

  • Lian, Chenglong;Lee, Kwang-Hee;Kim, Cheol-Hyun;Lee, Chul-Hee
    • Tribology and Lubricants
    • /
    • v.30 no.4
    • /
    • pp.234-239
    • /
    • 2014
  • Magneto-rheological elastomer (MR elastomer) is a smart material, because it has mechanical properties that change under a magnetic field. An MR elastomer changes its stiffness characteristics when the inner particles (iron particles) align along the direction of a magnetic field. There has been much research to make use of this characteristic to control vibration issues in various mechanical systems, such as for mounting systems in the automotive field, home appliances, etc. Furthermore, the friction and wear properties of MR elastomer have been studied, as these relate to the durability of the material needed to meet engineering requirements. Rolling friction (or rolling resistance) is one of these friction properties, but has not yet been studied in the context of MR elastomers. In this study, an MR elastomer is fabricated in the shape of a hollow cylinder to evaluate the rolling friction characteristic under a magnetic field. The test apparatus is setup and a strain gauge is used to calculate the rolling resistance under test conditions. Permanent magnets are used to supply the magnetic field during tests. The load and rolling speed conditions are also considered for the tests. The test results show that rolling friction characteristic has a different trend under different magnetic field, load, and rolling speed conditions. It is assumed that the stiffness change of an MR elastomer under a magnetic field has an effect on the rolling friction characteristic of the MR elastomer. For the future work, the rolling friction characteristics of MR elastomers will be controlled by adjusting the strength of the magnetic field using electromagnets.

Study on large tonnage pile foundation load test system and field test of long rock-socketed pile

  • Zhang, Xue-feng;Ni, Ying-sheng;Song, Chun-xia;Xu, Dong
    • Geomechanics and Engineering
    • /
    • v.21 no.6
    • /
    • pp.565-570
    • /
    • 2020
  • Large tonnage pile foundation load test system is designed in this paper by using pre-stressed technique to optimize the design of anchor pile reaction beam system, in which project pile can be successfully taken as anchor pile. The test results show that the cracks and excessive deformations of the prestressed anti-force device designed in this study have not occurred, and the prestressed tendons of the anchor pile ensure that the anchor pile will not be pulled and fractured, and the prestressed tendons can be reused, thus ensuring the safety and reliability of the test. This test method can directly test bearing capacity of long rock-socketed piles, and analysis bearing behaviors from test results of sensors which embedded in the pile. Through test studied, authors summarized the vertical bearing characteristics of long rock-socketed piles and the main problems that should be paid attention to during design and construction, and provided reliable solutions.