• Title/Summary/Keyword: field exploration

Search Result 835, Processing Time 0.026 seconds

The Effect of Cloud-based IT Architecture on IT Exploration and Exploitation: Enabling Role of Modularity and Virtuality

  • Insoo Son;Dongwon Lee;Gwanhoo Lee;Youngjin Yoo
    • Asia pacific journal of information systems
    • /
    • v.28 no.4
    • /
    • pp.240-257
    • /
    • 2018
  • In today's turbulent business landscape, a firm's ability to explore new IT capabilities and exploit current ones is essential for enabling organizational agility and achieving high organizational performance. We propose IT exploration and exploitation as two critical organizational learning processes that are essential for gaining and sustaining competitive advantages. However, it remains unclear how the emerging cloud-based IT architecture affects an organization's ability to explore and exploit its IT capabilities. We conceptualize modularity and virtuality as two critical dimensions of emerging cloud-based IT architecture and investigate how they affect IT exploration and exploitation. We test our hypotheses using data obtained from our field survey of IT managers. We find that modularity is positively associated with both exploration and exploitation whereas virtuality is positively associated with exploration, but not with exploitation. We also find that the effect of modularity on exploitation is stronger than its effect on exploration.

A new geophysical exploration method based on electrical resistivity to detect underground utility lines and geological anomalies: Theory and field demonstrations

  • Jo, Seon-Ah;Kim, Kyoung-Yul;Ryu, Hee-Hwan
    • Geomechanics and Engineering
    • /
    • v.18 no.5
    • /
    • pp.527-534
    • /
    • 2019
  • Although ground investigation had carried out prior to the construction, many problems have arisen during the civil-engineering works because of the presence of the unexpected underground utility lines or anomalies. In this study, a new geophysical exploration method was developed to solve those problems by improving and supplementing the existing methods. This new method was based on the difference of electrical resistance values between anomalies and surrounding ground medium. A theoretical expression was suggested to define the characteristics of the anomalies such as location, size and direction, by applying the electric field analysis. An inverse analysis algorithm was also developed to solve the theoretical expression using the measured electrical resistance values which were generated by the voltage flowing the subsurface medium. To verify the developed method, field applications were conducted at the sites under construction or planned. From the results of the field tests, it was found that not only the new method was more predictive than the existing methods, but its results were good agreed with the measured ones. Therefore, it is expected that application of the new exploration method reduces the unexpected accidents caused by the underground uncertainties during the underground construction works.

Design & Test of Stereo Camera Ground Model for Lunar Exploration

  • Heo, Haeng-Pal;Park, Jong-Euk;Shin, Sang-Youn;Yong, Sang-Soon
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.6
    • /
    • pp.693-704
    • /
    • 2012
  • Space-born remote sensing camera systems tend to be developed to have very high performances. They are developed to provide extremely small ground sample distance, wide swath width, and good MTF (Modulation Transfer Function) at the expense of big volume, massive weight, and big power consumption. Therefore, the camera system occupies relatively big portion of the satellite bus from the point of mass and volume. However, the camera systems for lunar exploration don't need to have such high performances. Instead, it should be versatile for various usages under various operating environments. It should be light and small and should consume small power. In order to be used for national program of lunar exploration, electro-optical versatile camera system, called MAEPLE (Multi-Application Electro-Optical Payload for Lunar Exploration), has been designed after the derivation of camera system requirements. A ground model of the camera system has been manufactured to identify and secure relevant key technologies. The ground model was mounted on an aircraft and checked if the basic design concept would be valid and versatile functions implemented on the camera system would worked properly. In this paper, results of design and functional test performed with the field campaigns and air-born imaging are introduced.

Upward Continuation of Potential Field on Spherical Patch Area (구면부분지역에서의 퍼텐셜마당의 상향연속)

  • Na, Sung-Ho;Chung, Tae Woong;Shin, Young Hong
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.4
    • /
    • pp.245-248
    • /
    • 2012
  • Two dimensional Fourier transform can be used for the upward continuation of gravity or magnetic field data acquired at given altitude over a rectangular area. Earth's curvature is often neglected in most potential field continuations, however, it should be considered over several hundred kilometer field area. In this study, we developed a new method retaining terms of Earth's curvature to better perform the continuation of potential field on spherical patch area.

Numerical Study of Inflation of a Dipolar Magnetic Field by Injecting Plasma with Different Beta

  • Kajimura, Yoshihiro;Funaki, Ikkoh;Shinohara, Iku;Usui, Hideyuki;Nakashima, Hideki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.553-556
    • /
    • 2008
  • A Magneto Plasma Sail(MPS) produces propulsive force by the interaction between the solar wind and an artificial magnetic field inflated by injecting plasma. Using a 2D hybrid PIC code, we evaluate the inflation of magnetic field when Argon(Ar) plasma with different ${\beta}_{in}$ including the value less than one is injected into the dipolar magnetic field generated by a superconducting coil. It is found that the magnetic field can be inflated by injecting plasma within an angle of $30^{\circ}$ in the polar direction and the magnetic field decays in the polar direction according to $B{\propto}r^{-2.4}$ after the plasma(${\beta}_{in}$=0.1) is injected.

  • PDF

The Transition Effect of Korea's Space Development

  • Kim, Jong-bum
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.2
    • /
    • pp.80-85
    • /
    • 2018
  • In the 1990s, South Korea recently launched Space Development and is pushing for a step toward Space. In the Space Launch Vehicle field, the development of Practical satellite type Launch Vehicle (Korea Space Launch Vehicle II) has progressed to the stage of proprietary development, and in the field of Satellite development, they also have a great deal of competitiveness. This study will be a shortcut to rediscovering our potential and looking for breakthroughs by reviewing and re-examining the effects of past Space development.

Estimation of Ripperbility in Rock Mass (암반의 굴착난이도 평가를 위한 제안)

  • 황영철;유병옥;김태수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.159-166
    • /
    • 1999
  • One of the most general methods that can evaluate the rippability is the seismic exploration. However, most field engineers have hardly used the seismic exploration. Instead of using the seismic exploration, they have usually used rock hammer and naked eyes to confirm the degree of rippability for soil, ripping rock and blasting rock. Therefore, to excavate the ground rationally, it is required to establish a quantitative criterion that can be used for distinguishing rippability. In this study, we find out the characteristics of rock strength through laboratory and field tests. The weathering condition of rock exposed to air due to excavation of soil layer and the variation of rock strength caused by weathering were investigated. A relationship between rock strength values that are obtained from uniaxial compression test, slaking durability test, point load test, schmidt hammer test and absorption ratio test is analyzed. The relationship is expressed in a form of equation by which we can evaluate the rock strengths obtained from simple laboratory and field tests. To evaluate rippability in a reasonable manner, a quantitative approach is proposed and a check list of rippability is developed based on the proposed methodology. It is recommended to modify the proposed method for evaluation of rippability in the field.

  • PDF

A Study on the Developement of Soil Geochemical Exploration Method for Metal Ore Deposits Affected by Agricultural Activity (농경작업 영향지역의 금속광상에 대한 토양 지구화학 탐사법 개발 연구)

  • Kim, Oak-Bae;Lee, Moo-Sung
    • Economic and Environmental Geology
    • /
    • v.25 no.2
    • /
    • pp.145-151
    • /
    • 1992
  • In order to study the optimum depth for the soil geochemical exploration in the area which is affected by agricultural activities and waste disposal of metal mine, the soil samples were sampled from the B layer of residual soil and vertical 7 layers up to 250 cm in the rice field and 3 layers up to 90 cm in the ordinary field. They were analyzed for Au, As, Cu, Pb and Zn by AAS, AAS-graphite furnace and ICP. To investigate the proper depth for the soil sampling in the contaminated area, the data were treated statistically by applying correlation coefficient, factor analysis and trend analysis. It is conclude that soil geochemical exploration method could be applied in the farm-land and a little contaminated area. The optimum depth of soil sampling is 60 cm in the ordinary field, and 150~200 cm in the rice field. Soil sampling in the area of a huge mine waste disposal is not recommendable. Plotting of geochemical map with factor scores as a input data shows a clear pattern compared with the map of indicater element such as As or Au. The second or third degree trend surface analysis is effective in inferring the continuity of vein in the area where the outcrop is invisible.

  • PDF

Identifying Cluster Candidates in CFHTLS W2 Field

  • Paek, Insu;Im, Myungshin;Kim, Jae-Woo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.59.2-59.2
    • /
    • 2018
  • Recent studies of galaxy clusters have shown that the galaxy clusters in dense environment tend to have lower star formation rate in local universe with z < 1. However, this correlation is not significant in galaxy clusters with z > 1. The study of galaxy clusters around z=1 can yield insight into cosmological galaxy evolution. Nevertheless, the identification of galaxy clusters beyond the scope of immediate local universe requires wide field data in optical and near-infrared bands. By incorporating data from Canada-France-Hawaii Telescope Legacy Survey(CFHTLS) and Infrared Medium-Deep Survey(IMS), the photometric redshifts of galaxies in CFHTLS W2 field were calculated. Using spatial distribution and photometric redshifts, the galaxies in the field were divided into redshift bins. The image of each redshift bin was analyzed by measuring the number density within proper distance of 1Mpc. By comparing high density regions in consecutive redshift bins, we identified the cluster candidates and mapped the large-scale structure within the CFHTLS W2 field.

  • PDF

INTRA-NIGHT OPTICAL VARIABILITY OF ACTIVE GALACTIC NUCLEI IN THE COSMOS FIELD WITH THE KMTNET

  • Kim, Joonho;Karouzos, Marios;Im, Myungshin;Choi, Changsu;Kim, Dohyeong;Jun, Hyunsung D.;Lee, Joon Hyeop;Mezcua, Mar
    • Journal of The Korean Astronomical Society
    • /
    • v.51 no.4
    • /
    • pp.89-110
    • /
    • 2018
  • Active Galactic Nucleus (AGN) variability can be used to study the physics of the region in the vicinity of the central black hole. In this paper, we investigated intra-night optical variability of AGN in the COSMOS field in order to understand the AGN instability at the smallest scale. Observations were performed using the KMTNet on three separate nights for 2.5 to 5 hours at a cadence of 20 to 30 min. We find that the observation enables the detection of short-term variability as small as ~ 0.02 and 0.1 mag for R ~ 18 and 20 mag sources, respectively. Using four selection methods (X-rays, mid-infrared, radio, and matching with SDSS quasars), 394 AGN are detected in the $4deg^2$ field of view. After differential photometry and ${\chi}^2$-test, we classify intra-night variable AGN. The fraction of variable AGN (0-8%) is statistically consistent with a null result. Eight out of 394 AGN are found to be intra-night variable in two filters or two nights with a variability level of 0.1 mag, suggesting that they are strong candidates for intra-night variable AGN. Still they represent a small population (2%). There is no sub-category of AGN that shows a statistically significant intra-night variability.