• Title/Summary/Keyword: field emission characteristics

Search Result 641, Processing Time 0.032 seconds

Fabrication and Characterization of InGaN/GaN LED structures grown on selectively wet-etched porous GaN template layer

  • Beck, Seol;Cho, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.124-124
    • /
    • 2010
  • Much interest has been focused on InGaN-based materials and their quantum structures due to their optoelectronics applications such as light emitting diode (LED) and photovoltaic devices, because of its high thermal conductivity, high optical efficiency, and direct wide band gap, in spite of their high density of threading dislocations. Build-in internal field-induced quantum-confined Stark effect in InGaN/GaN quantum well LED structures results in a spatial separation of electrons and holes, which leads to a reduction of radiative recombination rate. Therefore, many growth techniques have been developed by utilizing lateral over-growth mode or by inserting additional layers such as patterned layer and superlattices for reducing threading dislocations and internal fields. In this work, we investigated various characteristics of InGaN multiple quantum wells (MQWs) LED structures grown on selectively wet-etched porous (SWEP) GaN template layer and compared with those grown on non-porous GaN template layer over c-plane sapphire substrates. From the surface morphology measured by atomic force microscope, high resolution X-ray diffraction analysis, low temperature photoluminescence (PL) and PL excitation measurements, good structural and optical properties were observed on both LED structures. However, InGaN MQWs LED structures grown on SWEP GaN template layer show relatively low In composition, thin well width, and blue shift of PL spectra on MQW emission. These results were explained by rough surface of template layer, reduction of residual compressive stress, and less piezoelectric field on MQWs by utilizing SWEP GaN template layer. Better electrical properties were also observed for InGaN MQWs on SWEP GaN template layer, specially at reverse operating condition for I-V measurements.

  • PDF

Analysis of Engine Load Factor for Agricultural Cultivator during Plow and Rotary Tillage Operation (플라우 및 로터리 작업 시 농업용 관리기의 엔진 부하율 분석)

  • Si-Eon Lee;Taek-Jin Kim;Yong-Joo Kim;Ryu-Gap Lim;Wan-Soo Kim
    • Journal of Drive and Control
    • /
    • v.20 no.2
    • /
    • pp.31-39
    • /
    • 2023
  • The aim of this study was to measure and analyze engine load factor (LF) according to working conditions (operation type and gear stage) of small agricultural multi-purpose cultivator to estimate the emission of air pollutants. To calculate LF, a torque sensor capable of collecting torque and rotational speed was installed on the engine output shaft and DAQ was used to collect data. A field test was conducted with major operation of a cultivator and tillage operations (plow tillage and rotary tillage). Engine power was calculated using engine torque and rotational speed and LF was calculated using real-time power and rated power. In addition, unified LF was calculated using the weight for each operation and the average LF for each operation. As a result, average LF values at 1.87 and 3.10 km/h by plow tillage were 0.50 and 0.69, respectively. Average LF values at 1.87 and 3.10 km/h by rotary tillage were 0.70 and 0.78, respectively. Furthermore, unified LF calculated in consideration of the weight factor showed a value of 0.65, which was 135% higher than the conventional LF (0.48). Results of this study could be used as basic information for realizing LF values in the field of agricultural machinery.

A Study on the GHG Reduction Newest Technology and Reduction Effect in Power Generation·Energy Sector (발전 에너지 업종의 온실가스 감축 신기술 조사 및 감축효과 분석)

  • Kim, Joo-Cheong;Shim, So-Jung
    • Journal of Climate Change Research
    • /
    • v.4 no.4
    • /
    • pp.349-358
    • /
    • 2013
  • In this study, the newest technology available to reduce GHG emissions, which can be applicable in energy industries of the future that has large reduction obligations by energy target management and large intensity of GHG emissions, has been investigated by searching the technical characteristics of each technology. The newest technology to reduce GHG emissions in the field of power generation and energy can be mainly classified into the improvement of efficiency, CCS, and gas combined-cycle technology. In order to improve the reliability of the GHG emission factor obtained from the investigation process, it has been compared to the technology-specific GHG emission factor derived from the estimated amount of emissions. Then the GHG abatement measures, using the derived estimation of factor, by using the newest technology to reduce GHG emissions have been predicted. As a result, the GHG reduction rate by technology of CCS development has been expected to be the largest more than 30%, and the abatement rate by technology of coal gasified fuel cell and pressurized fluidized-bed thermal power generation has been showed more than 20%. If the effective introduction of the newest technology and the study of its characteristics is continued, and properly applied for future GHG emissions, it can be prospected that the national GHG reduction targets can be achieved in cost-efficient way.

Synthesis of C3S, C2S, C3A Powders using Ultra-fine Calcium Oxide Powder Synthesized from Eggshell and Effect of C3A Content on Hardened Mixed Aggregates (난각으로부터 합성된 초미립 CaO 분말을 이용한 C3S, C2S, C3A 분말 합성 및 혼합 경화체에 미치는 C3A 함량의 영향)

  • Kong, Heon;Kwon, Ki-Beom;Park, Sang-Jin;Noh, Whyo-Sub;Lee, Sang-Jin
    • Journal of Powder Materials
    • /
    • v.26 no.6
    • /
    • pp.493-501
    • /
    • 2019
  • In this work, ultra-fine calcium oxide (CaO) powder derived from eggshells is used as the starting material to synthesize mineral trioxide aggregate (MTA). The prepared CaO powder is confirmed to have an average particle size of 500 nm. MTAs are synthesized with three types of fine CaO-based powders, namely, tricalcium silicate (C3S), dicalcium silicate (C2S), and tricalcium aluminate (C3A). The synthesis behavior of C3S, C2S and C3A with ultra-fine CaO powder and the effects of C3A content and curing time on the properties of MTA are investigated. The characteristics of the synthesized MTA powders are examined by X-ray diffraction (XRD), field emission-scanning electron microscope (FE-SEM), and a universal testing machine (UTM). The microstructure and compressive strength characteristics of the synthesized MTA powders are strongly dependent on the C3A wt.% and curing time. Furthermore, MTA with 5 wt.% C3A is found to increase the compressive strength and shorten the curing time.

A Study on Characteristics of Insulation Breakdown and Surface Discharge by the Mixing Ratio of Dry Air/O2 gas mixtures (Dry Air/O2 혼합가스의 혼합비에 따른 절연파괴 및 연면방전 특성 연구)

  • Seok, Jeong-Hoo;Beak, Jong-Hyun;Lim, Dong-Young;Bae, Sungwoo;Kim, Ki-Chai;Park, Won-Zoo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.6
    • /
    • pp.49-57
    • /
    • 2015
  • This paper presents the discharge characteristics and economic feasibility of a Dry $Air/O_2$ and a $N_2/O_2$ mixture gas in order to review $SF_6$ alternative. From AC discharge experiment in an quasi-uniform field, it was found that the optimal $N_2/O_2$ mixing ratio which breakdown voltage and surface flashover voltage were the highest was 70/30 and that the pressure dependence on the breakdown voltage was higher than that of the surface flashover voltage in the Dry $Air/O_2$ and the $N_2/O_2$ mixture gas. The mixing ratio (70/30) and the tendency of the pressure dependence were described in detail based on physical factors (impact ionization coefficient, electron attachment coefficient, secondary electron emission coefficient) involved in discharge mechanism and a electron source, respectively. In addition, the performance insulation and the economic feasibility of the Dry $Air/O_2$ and the $N_2/O_2$ mixture gas were discussed so that Dry $Air/O_2$ mixture gaswas more suitable than $N_2/O_2$ mixture gas to the $SF_6$ alternative.

The Emission and Characteristics Measurement of Electron Beam and Basis Construction for Education Usage (전자빔 인출 및 빔 계측과 교육 활용을 위한 기반구축)

  • Lee, Dong-Hoon
    • Journal of IKEEE
    • /
    • v.11 no.4
    • /
    • pp.257-264
    • /
    • 2007
  • The MM22 microtron has used as a cancer therapy machine from Nov. 1986 to Feb. 2006. This machine was moved and installed to a radiation research center to use as an education and research tool from treatment machine because of aging of MM22 microtron. In this paper, for extracting the electron beam from microtron, operation principle of the microtron, system characteristics of each module, and pulse structures were reviewed. The beam extraction and measurement were performed after measuring pulses of each major module and extraction trials in the beam line. After finishing the movement of MM22 microtron, the 30mA target current in the case of 10 MV X-ray beam was extracted and the beam flatness of radiation distribution was acquired within 3% error ratio after 100 MU was irradiated on X-omatV Film at SSD 100 cm and field size $10{\times}10cm^2$. As a result, the microtron movement and new installation was performed with success.

  • PDF

Electrochemical characteristics of Ca, P, Sr, and Si Ions from PEO-treated Ti-6Al-4V Alloy Surface

  • Yu, Ji-Min;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.154-154
    • /
    • 2017
  • Ti-6Al-4V alloys are widely used as metal-lic biomaterials in dentistry and orthopedics due to its excellent biocompatibility and me-chanical properties. However, because of low biological activity, it is difficult to form bone growth directly on the surface of titanium implants. For this reason, surface treatment of plasma electrolytic oxidation(PEO) was used for dental implants. To enhance bioac-tivity on the surface, strontium(Sr) and sili-con(Si) ions can be added to PEO treated sur-face in the electrolyte containing these ions. The presence of Sr in the coating enhances osteoblast activity and differentiation, where-as it inhibits osteoclast production and prolif-eration. And Si has been found to be essen-tial for normal bone, cartilage growth, and development. In this study, electrochemical characteristics of Ca, P, Sr, and Si ions from PEO-treated Ti-6Al-4V alloy surface was re-searched using various experimental instruments. DC power is used and Ti-6Al-4V al-loy was subjected to a voltage of 280 V for 3 minutes in the electrolyte containing 5, 10, 20M% Sr ion and 5M% Si ion. The morphol-ogies of PEO-treated Ti-6Al-4V alloy by electrochemical anodization were examined by field-emission scanning electron micro-scopes (FE-SEM), energy dispersive x-ray spectroscopy (EDS), x-ray diffraction (XRD) and corrosion analysis using AC impedance and potentiodynamic polarization test in 0.9% NaCl solution at similar body tempera-ture using a potentiostat with a scan rate of 1.67mV/s and potential range from -1500mV to + 2000mV.

  • PDF

The Influence of $O_2$ Gas on the Etch Characteristics of FePt Thin Films in $CH_4/O_2/Ar$ gas

  • Lee, Il-Hoon;Lee, Tea-Young;Chung, Chee-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.408-408
    • /
    • 2012
  • It is well known that magnetic random access memory (MRAM) is nonvolatile memory devices using ferromagnetic materials. MRAM has the merits such as fast access time, unlimited read/write endurance and nonvolatility. Although DRAM has many advantages containing high storage density, fast access time and low power consumption, it becomes volatile when the power is turned off. Owing to the attractive advantages of MRAM, MRAM is being spotlighted as an alternative device in the future. MRAM consists of magnetic tunnel junction (MTJ) stack and complementary metal- oxide semiconductor (CMOS). MTJ stacks are composed of various magnetic materials. FePt thin films are used as a pinned layer of MTJ stack. Up to date, an inductively coupled plasma reactive ion etching (ICPRIE) method of MTJ stacks showed better results in terms of etch rate and etch profile than any other methods such as ion milling, chemical assisted ion etching (CAIE), reactive ion etching (RIE). In order to improve etch profiles without redepositon, a better etching process of MTJ stack needs to be developed by using different etch gases and etch parameters. In this research, influences of $O_2$ gas on the etching characteristics of FePt thin films were investigated. FePt thin films were etched using ICPRIE in $CH_4/O_2/Ar$ gas mix. The etch rate and the etch selectivity were investigated in various $O_2$ concentrations. The etch profiles were studied in varying etch parameters such as coil rf power, dc-bias voltage, and gas pressure. TiN was employed as a hard mask. For observation etch profiles, field emission scanning electron microscopy (FESEM) was used.

  • PDF

Observation of Plasma Shape by Continuous dc and Pulsed dc (직류 방전과 펄스 직류 방전에 의한 플라즈마 형상 관찰)

  • Yang, Won-Kyun;Joo, Jung-Hoon
    • Journal of Surface Science and Engineering
    • /
    • v.42 no.3
    • /
    • pp.133-138
    • /
    • 2009
  • Effects of bipolar pulse driving frequency between 50 kHz and 250 kHz on the discharge shapes were analyzed by measuring plasma characteristics by OES (Optical Emission Spectroscopy) and Langmuir probe. Plasma characteristics were modeled by a simple electric field analysis and fluid plasma modeling. Discharge shapes by a continuous dc and bipolar pulsed dc were different as a dome-type and a vertical column-type at the cathode. From OES, the intensity of 811.5 nm wavelength, the one of the main peaks of Ar, decreased to about 43% from a continuous dc to 100 kHz. For increasing from 100 kHz to 250 kHz, the intensity of 811.5 nm wavelength also decreased by 46%. The electron density decreased by 74% and the electron temperature increased by 36% at the specific position due to the smaller and denser discharge shape for increasing pulse frequency. Through the numerical analysis, the negative glow shape of a continuous dc were similar to the electric potential distribution by FEM (Finite Element Method). For the bipolar pulsed dc, we found that the electron temperature increased to maximum 10 eV due to the voltage spikes by the fast electron acceleration generated in pre-sheath. This may induce the electrons and ions from plasma to increase the energetic substrate bombardment for the dense thin film growth.

Improved Characteristics of Carbon Nanotube Transparent Electrode Films Using Acid Treatments (산 처리를 이용한 탄소 나노튜브 투명전극 특성 향상)

  • Jeon, Joo-Hee;Choi, Ji-Hyuk;Moon, Kyeong-Ju;Lee, Tae-Il;Moon, Ho-Jun;Kim, Hyung-Yeol;Myoung, Jae-Min
    • Korean Journal of Materials Research
    • /
    • v.20 no.2
    • /
    • pp.51-54
    • /
    • 2010
  • Transparent conductive films of single wall carbon nanotube (SWCNT) were prepared by spray coating method. The effect of acid treatment on the SWCNT films was investigated. The field emission scanning electron microscope (FESEM) shows that acid treatment can remove dispersing agent. The electrical and optical properties of acid-treated films were enhanced compared with those of as deposited SWCNT films. Nitric acid ($HNO_3$), sulfuric acid ($H_2SO_4$), nitric acid:sulfuric acid (3:1) were used for post treatment. Although all solutions reduced sheet resistance of CNT films, nitric acid can improve electrical characteristics efficiently. During acid treatment, transmittance was increased continuously with time. But the sheet resistance was decreased for the first 20 minutes and then increased again. Post-treated SWCNT films were transparent (85%) in the visible range with sheet resistance of about $162{\Omega}/sq$. In this paper we discuss simple fabrication, which is suitable for different types of large-scale substrates and simple processes to improve properties of SWCNT films.