• Title/Summary/Keyword: field effect mobility

Search Result 517, Processing Time 0.028 seconds

A Brief Review on Recent Developments in MAPbI3 Perovskite-Based Transistors

  • Padi, Siva Parvathi;Kim, Taeyong;Rabelo, Matheus;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.5
    • /
    • pp.348-356
    • /
    • 2021
  • Field-effect transistors (FETs) are the key elements of conventional electronics; hence, have drawn a lot of research and commercial interests. In recent years, metal halide perovskite materials have achieved a remarkable efficiency of 29.15% in the field of photovoltaics, and have drawn the scientific community's attention to promote their use in the field of optoelectronics, such as FETs and phototransistors. The MAPbI3 (methylammonium lead iodide) perovskite TFT has achieved a record hole mobility of 21.41 cm2/V-s in the year 2020. In this review, we will briefly discuss the physical structure of MAPbI3 perovskite and the essential factors that stimulate these devices, together with the role of defects, the ion migration concept, and the implication of both dielectric and electrode materials on the device's performance.

Synthesis of Fluorinated Polymer Gate Dielectric with Improved Wetting Property and Its Application to Organic Field-Effect Transistors

  • Kim, Jae-Wook;Jung, Hee-Tae;Ha, Sun-Young;Yi, Mi-Hye;Park, Jae-Eun;Kim, Hyo-Joong;Choi, Young-Ill;Pyo, Seung-Moon
    • Macromolecular Research
    • /
    • v.17 no.9
    • /
    • pp.646-650
    • /
    • 2009
  • We report the fabrication of pentacene organic field-effect transistors (OFETs) using a fluorinated styrene-alt-maleic anhydride copolymer gate dielectric, which was prepared from styrene derivatives with a fluorinated side chain [$-CH_2-O-(CH_2)_2-(CF_2)_5CF_3$] and maleic anhydride through a solution polymerization technique. The fluorinated side chain was used to impart hydrophobicity to the surface of the gate dielectric and maleic anhydride was employed to improve its wetting properties. A field-effect mobility of 0.12 cm$^2$/Vs was obtained from the as-prepared top-contact pentacene FETs. Since various functional groups can be introduced into the copolymer due to the nature of maleic anhydride, its physical properties can be manipulated easily. Using this type of copolymer, the performance of organic FETs can be enhanced through optimization of the interfacial properties between the gate dielectric and organic semiconductor.

Aeroacoustic Analysis of UAM Aircraft in Ground Effect for Take-off/Landing on Vertiport (버티포트 이착륙을 고려한 지면 효과를 받는 UAM 항공기에 대한 공력소음 해석 연구)

  • Jin-Yong Yang;Hyeok-Jin Lee;Min-Je Kang;Eunmin Kim;Rho-Shin Myong;Hakjin Lee
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.2
    • /
    • pp.26-37
    • /
    • 2023
  • Urban air mobility (UAM) is being developed as part of the next-generation aircraft, which could be a viable solution to entrenched problems of urban traffic congestion and environmental pollution. A new airport platform called vertiport as a space where UAM can take off and land vertically is also being introduced. Noise regulations for UAM will be strict due to its operation in a highly populated urban area. Ground effects caused by vertiport can directly affect aerodynamic forces and noise characteristics of UAM. In this study, ground effects of vertiport on aerodynamic loads, vorticity field, and far-field noise were analyzed using Lattice-Boltzmann Method (LBM) simulation and Ffowcs Williams and Hawkings (FW-H) acoustic analogy with a permeable surface method.

Fabrication of Two-dimensional MoS2 Films-based Field Effect Transistor for High Mobility Electronic Device Application

  • Joung, DaeHwa;Park, Hyeji;Mun, Jihun;Park, Jonghoo;Kang, Sang-Woo;Kim, TaeWan
    • Applied Science and Convergence Technology
    • /
    • v.26 no.5
    • /
    • pp.110-113
    • /
    • 2017
  • The two-dimensional layered $MoS_2$ has high mobility and excellent optical properties, and there has been much research on the methods for using this for next generation electronics. $MoS_2$ is similar to graphene in that there is comparatively weak bonding through Van der Waals covalent bonding in the substrate-$MoS_2$ and $MoS_2-MoS_2$ heteromaterial as well in the layer-by-layer structure. So, on the monatomic level, $MoS_2$ can easily be exfoliated physically or chemically. During the $MoS_2$ field-effect transistor fabrication process of photolithography, when using water, the water infiltrates into the substrate-$MoS_2$ gap, and leads to the problem of a rapid decline in the material's yield. To solve this problem, an epoxy-based, as opposed to a water-based photoresist, was used in the photolithography process. In this research, a hydrophobic $MoS_2$ field effect transistor (FET) was fabricated on a hydrophilic $SiO_2$ substrate via chemical vapor deposition CVD. To solve the problem of $MoS_2$ exfoliation that occurs in water-based photolithography, a PPMA sacrificial layer and SU-8 2002 were used, and a $MoS_2$ film FET was successfully created. To minimize Ohmic contact resistance, rapid thermal annealing was used, and then electronic properties were measured.

Degradation of electrical characteristics in Bio-FET devices by O2 plasma surface treatment and improving by heat treatment (O2 플라즈마 표면처리에 의한 Bio-FET 소자의 특성 열화 및 후속 열처리에 의한 특성 개선)

  • Oh, Se-Man;Jung, Myung-Ho;Cho, Won-Ju
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.3
    • /
    • pp.199-203
    • /
    • 2008
  • The effects of surface treatment by $O_2$ plasma on the Bio-FETs were investigated by using the pseudo-MOSFETs on the SOI substrates. After a surface treatment by $O_2$ plasma with different RF powers, the current-voltage and field effect mobility of pseudo-MOSFETs were measured by applying back gate bias. The subthreshold characteristics of pseudo-MOSFETs were significantly degraded with increase of RF power. Additionally, a forming gas anneal process in 2 % diluted $H_2/N_2$ ambient was developed to recover the plasma process induced surface damages. A considerable improvement of the subthreshold characteristics was achieved by the forming gas anneal. Therefore, it is concluded that the pseudo-MOSFETs are a powerful tool for monitoring the surface treatment of Bio-FETs and the forming gas anneal process is effective for improving the electrical characteristics of Bio-FETs.

New Semiconducting Multi-branched Conjugated Molecules Bearing 3,4-Ethylene-dioxythiophene-based Thiophenyl Moieties for Organic Field Effect Transistor

  • Kim, Dae-Chul;Lee, Tae-Wan;Lee, Jung-Eun;Kim, Kyung-Hwan;Cho, Min-Ju;Choi, Dong-Hoon;Han, Yoon-Deok;Cho, Mi-Yeon;Joo, Jin-Soo
    • Macromolecular Research
    • /
    • v.17 no.7
    • /
    • pp.491-498
    • /
    • 2009
  • New $\pi$-conjugated multi-branched molecules were synthesized through the Homer-Emmons reaction using alkyl-substituted, 3,4-ethylenedioxythiophene-based, thiophenyl aldehydes and octaethyl benzene-l,2,4,5-tetrayltetrakis(methylene) tetraphosphonate as the core unit; these molecules have all been fully characterized. The two multi-branched conjugated molecules exhibited excellent solubility in common organic solvents and good self-film forming properties. The semiconducting properties of these multi-branched molecules were also evaluated in organic field-effect transistors (OFET). With octyltrichlorosilane (OTS) treatment of the surface of the $SiO_2$ gate insulator, two of the crystalline conjugated molecules, 7 and 8, exhibited carrier mobilities as high as $2.4({\pm}0.5){\times}10^{-3}$ and $1.3({\pm}0.5){\times}10^{-3}cm^2V^{-1}s^{-1}$, respectively. The mobility enhancement of OFET by light irradiation ($\lambda$ = 436 nm) supported the promising photo-controlled switching behavior for the drain current of the device.

Cost-Effective Soft Lithography of Organic Semiconductors in OFETs with Compact Discs as Master Molds (Compact Disc를 마스터 몰드로 사용하는 저비용의 OFET용 유기반도체 소프트 리소그래피)

  • Sejin Park;Hyukjin Kim;Tae Kyu An
    • Journal of Adhesion and Interface
    • /
    • v.23 no.4
    • /
    • pp.116-121
    • /
    • 2022
  • OFET have require fine patterning technology for organic semiconductor solution process to be used in actual electronics. In this study, we compared and analyzed the soft lithography method which can form fine patterns more than the conventional spin coating method in order to confirm that it can have better electrical characteristics. The soft lithography method produced a flexible master mold using nano patterns on compact disc surfaces and obtained a 650 nm wide 2,7-Dioctyl [1] benzothieno [3,2-b] [1] benzo thiophene (C8-BTBT) nanowires. As a result, the field-effect mobility of devices fabricated by the spin coating method was 0.0036 cm2/Vs and mobility of devices produced by soft lithography method was 0.086 cm2/Vs, which was about 20 times higher than spin-coated devices and has better electrical performance.

Enhanced Performance in Isoindigo Based Organic Small Molecules Field Effect Transistors Using Solvent Additives

  • Park, Yu-Jeong;Jo, Sin-Uk;Seo, Jeong-Hwa
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.392.1-392.1
    • /
    • 2014
  • Isoindigo based small molecules have attracted much attention in the field of optoelectronic devices due to their broad absorbance and high charge carrier mobilitiies. Herein, we investigate the field effect transistor characteristics of a series of isoindigo based donor-acceptor-donor (D-A-D) small molecules containing a variable number of thiophene moieties (named IDT, ID2T, and ID3T) which form pi-bridges between the D and A moieites and a different donor moiety (IDED). In order to improve the carrier mobility, 1-chloronaphthalene (CN) and 1,8-diiodooctane (DIO) as solvent additives were used. The film morphology, crystallinity and optical properties of the materials processed with various concentrations of solvent additives were investigated through atomic force microscopy (AFM), X-ray diffraction (XRD) and UV-vis absorption spectroscopy.

  • PDF

Study of Magnetic Field Shielded Sputtering Process as a Room Temperature High Quality ITO Thin Film Deposition Process

  • Lee, Jun-Young;Jang, Yun-Sung;Lee, You-Jong;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.288-289
    • /
    • 2011
  • Indium Tin Oxide (ITO) is a typical highly Transparent Conductive Oxide (TCO) currently used as a transparent electrode material. Most widely used deposition method is the sputtering process for ITO film deposition because it has a high deposition rate, allows accurate control of the film thickness and easy deposition process and high electrical/optical properties. However, to apply high quality ITO thin film in a flexible microelectronic device using a plastic substrate, conventional DC magnetron sputtering (DMS) processed ITO thin film is not suitable because it needs a high temperature thermal annealing process to obtain high optical transmittance and low resistivity, while the generally plastic substrates has low glass transition temperatures. In the room temperature sputtering process, the electrical property degradation of ITO thin film is caused by negative oxygen ions effect. This high energy negative oxygen ions(about over 100eV) can be critical physical bombardment damages against the formation of the ITO thin film, and this damage does not recover in the room temperature process that does not offer thermal annealing. Hence new ITO deposition process that can provide the high electrical/optical properties of the ITO film at room temperature is needed. To solve these limitations we develop the Magnetic Field Shielded Sputtering (MFSS) system. The MFSS is based on DMS and it has the plasma limiter, which compose the permanent magnet array (Fig.1). During the ITO thin film deposition in the MFSS process, the electrons in the plasma are trapped by the magnetic field at the plasma limiters. The plasma limiter, which has a negative potential in the MFSS process, prevents to the damage by negative oxygen ions bombardment, and increases the heat(-) up effect by the Ar ions in the bulk plasma. Fig. 2. shows the electrical properties of the MFSS ITO thin film and DMS ITO thin film at room temperature. With the increase of the sputtering pressure, the resistivity of DMS ITO increases. On the other hand, the resistivity of the MFSS ITO slightly increases and becomes lower than that of the DMS ITO at all sputtering pressures. The lowest resistivity of the DMS ITO is $1.0{\times}10-3{\Omega}{\cdot}cm$ and that of the MFSS ITO is $4.5{\times}10-4{\Omega}{\cdot}cm$. This resistivity difference is caused by the carrier mobility. The carrier mobility of the MFSS ITO is 40 $cm^2/V{\cdot}s$, which is significantly higher than that of the DMS ITO (10 $cm^2/V{\cdot}s$). The low resistivity and high carrier mobility of the MFSS ITO are due to the magnetic field shielded effect. In addition, although not shown in this paper, the roughness of the MFSS ITO thin film is lower than that of the DMS ITO thin film, and TEM, XRD and XPS analysis of the MFSS ITO show the nano-crystalline structure. As a result, the MFSS process can effectively prevent to the high energy negative oxygen ions bombardment and supply activation energies by accelerating Ar ions in the plasma; therefore, high quality ITO can be deposited at room temperature.

  • PDF

Magnetic Field-Assisted, Nickel-Induced Crystallization of Amorphous Silicon Thin Film

  • Moon, Sunwoo;Kim, Kyeonghun;Kim, Sungmin;Jang, Jinhyeok;Lee, Seungmin;Kim, Jung-Su;Kim, Donghwan;Han, Seung-Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.313-313
    • /
    • 2013
  • For high-performance TFT (Thin film transistor), poly-crystalline semiconductor thin film with low resistivity and high hall carrier mobility is necessary. But, conventional SPC (Solid phase crystallization) process has disadvantages in fabrication such as long annealing time in high temperature or using very expensive Excimer laser. On the contrary, MIC (Metal-induced crystallization) process enables semiconductor thin film crystallization at lower temperature in short annealing time. But, it has been known that the poly-crystalline semiconductor thin film fabricated by MIC methods, has low hall mobility due to the residual metals after crystallization process. In this study, Ni metal was shallow implanted using PIII&D (Plasma Immersion Ion Implantation & Deposition) technique instead of depositing Ni layer to reduce the Ni contamination after annealing. In addition, the effect of external magnetic field during annealing was studied to enhance the amorphous silicon thin film crystallization process. Various thin film analytical techniques such as XRD (X-Ray Diffraction), Raman spectroscopy, and XPS (X-ray Photoelectron Spectroscopy), Hall mobility measurement system were used to investigate the structure and composition of silicon thin film samples.

  • PDF