• Title/Summary/Keyword: field coefficient

Search Result 2,166, Processing Time 0.034 seconds

A Study on the Utilization of Drilling Investigation Information (시추조사 정보 활용방안에 관한 연구)

  • Jinhwan Kim;Yong Baek;Jong-Hyun Lee;Gyuphil Lee;Woo-Seok Kim
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.531-541
    • /
    • 2023
  • The most important thing in the 4th industry, AI era, and smart construction era is digital data. Basic data in the civil engineering field begins with ground investigation. The Ministry of Land, Infrastructure and Transport operates the Geotechnical Information Database Center to manage ground survey data, including drilling but the focus is on data distribution. This study seeks to devise a plan for long-term use of the results of drilling investigation conducted for the design and construction of various construction projects. For this purpose, a pilot area was set up and a 'geotechnical design parameters digital map' was created using some geotechnical design parameters from the drilling investigation data. Using the developed algorithm, a digital map of friction angle and permeability coefficient for the hard rock stratum in the pilot area was created. Geotechnical design parameters digital map can identify the overall condition of the ground, but reliability needs to be improved due to the lack of initial data input. Through additional research, it will be possible to produce a more complete geotechnical design parameters digital map.

Estimation Method of Resilience Pads Spring Stiffness for Sleeper Floating Tracks based on Track Vibration (궤도 진동기반의 침목플로팅궤도 침목방진패드 스프링강성 추정 기법 연구)

  • Jung-Youl Choi;Sang-Wook Park;Jee-Seung Chung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.1057-1063
    • /
    • 2023
  • The urban railway sleeper floating track, the subject of this study, is an anti-vibration track to reduce vibration transmitted to the structure. currently, the replacement cycle of resilience pad for sleeper floating tracks is set and operated based on load. however, most previous studies were conducted on load-based structural safety aspects, such as fatigue life evaluation of sleeper anti-vibration pads and increase in track impact coefficient and track support stiffness due to increase in spring stiffness. therefore, in this study, we measure the vibration acceleration of the ballast for each analysis section and use the results of 7 million fatigue tests to calculate the spring stiffness of the resilience pad for each section. the spring stiffness of the resilience pad calculated for each section was set as the analysis data and the concrete vibration acceleration was derived analytically. the adequacy of analysis modeling was verified as the analyzed concrete bed vibration acceleration for each section was within the field-measured concrete bed vibration acceleration range. using the vibration acceleration curve according to the derived spring stiffness change, the spring stiffness of the resilience pad is estimated from the measured vibration acceleration. therefore, we would like to present a technique that can estimate the spring stiffness of resilience pad of a running track using the vibration acceleration of the measured concrete bed.

Prediction and Determination of Correction Coefficients for Blast Vibration Based on AI (AI 기반의 발파진동 계수 예측 및 보정계수 산정에 관한 연구)

  • Kwang-Ho You;Myung-Kyu Song;Hyun-Koo Lee;Nam-Jung Kim
    • Explosives and Blasting
    • /
    • v.41 no.3
    • /
    • pp.26-37
    • /
    • 2023
  • In order to determine the amount of explosives that can minimize the vibration generated during tunnel construction using the blasting method, it is necessary to derive the blasting vibration coefficients, K and n, by analyzing the vibration records of trial blasting in the field or under similar conditions. In this study, we aimed to develop a technique that can derive reasonable K and n when trial blasting cannot be performed. To this end, we collected full-scale trial blast data and studied how to predict the blast vibration coefficient (K, n) according to the type of explosive, center cut blasting method, rock origin and type, and rock grade using deep learning (DL). In addition, the correction value between full-scale and borehole trial blasting results was calculated to compensate for the limitations of the borehole trial blasting results and to carry out a design that aligns more closely with reality. In this study, when comparing the available explosive amount according to the borehole trial blasting result equation, the predictions from deep learning (DL) exceed 50%, and the result with the correction value is similar to other blast vibration estimation equations or about 20% more, enabling more economical design.

Prospective Comparison of FOCUS MUSE and Single-Shot Echo-Planar Imaging for Diffusion-Weighted Imaging in Evaluating Thyroid-Associated Ophthalmopathy

  • YunMeng Wang;YuanYuan Cui;JianKun Dai;ShuangShuang Ni;TianRan Zhang;Xin Chen;QinLing Jiang;YuXin Cheng;YiChuan Ma;Tuo Li;Yi Xiao
    • Korean Journal of Radiology
    • /
    • v.25 no.10
    • /
    • pp.913-923
    • /
    • 2024
  • Objective: To prospectively compare single-shot (SS) echo-planar imaging (EPI) and field-of-view optimized and constrained undistorted single-shot multiplexed sensitivity-encoding (FOCUS MUSE) for diffusion-weighted imaging (DWI) in evaluating thyroid-associated ophthalmopathy (TAO). Materials and Methods: SS EPI and FOCUS MUSE DWIs were obtained from 39 patients with TAO (18 male; mean ± standard deviation: 48.3 ± 13.3 years) and 26 healthy controls (9 male; mean ± standard deviation: 43.0 ± 18.5 years). Two radiologists scored the visual image quality using a 4-point Likert scale. The image quality score, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and apparent diffusion coefficient (ADC) of extraocular muscles (EOMs) were compared between the two DWIs. Differences in the ADC of EOMs were also evaluated. The performance of discriminating active from inactive TAO was assessed using receiver operating characteristic curves. The correlation between ADC and clinical activity score (CAS) was analyzed using Spearman correlation. Results: Compared with SS EPI DWI, FOCUS MUSE DWI demonstrated significantly higher image quality scores (P < 0.001), a higher SNR and CNR on the lateral rectus muscle (LRM) and medial rectus muscle (MRM) (P < 0.05), and a non-significant difference in the ADC of the LRM and MRM. Active TAO showed higher ADC than inactive TAO and healthy controls with both SS EPI and FOCUS MUSE DWIs (P < 0.001). Inactive TAO and healthy controls did not show a significant ADC difference with both DWIs. Compared with SS EPI DWI, FOCUS MUSE DWI demonstrated better discrimination of active from inactive TAO (AUC: 0.925 vs. 0.779; P = 0.007). The ADC was significantly correlated with CAS in SS EPI DWI (r = 0.391, P < 0.001) and FOCUS MUSE DWI (r = 0.645, P < 0.001). Conclusion: FOCUS MUSE DWI provides better images for evaluating EOMs and better performance in diagnosing active TAO than SS EPI DWI. The application of FOCUS MUSE will facilitate the DWI evaluation of TAO.

Analysis of Drone Downwash and Droplet Deposition for Improved Aerial Spraying Efficiency in Agriculture (드론 방제 살포 효율 개선을 위한 하향풍 및 액적 퇴적 분포 분석)

  • Lee, Se-Yeon;Park, Jinseon;Lee, Chae-Rin;Choi, Lak-Yeong;Daniel Kehinde Favour;Park, Ji-Yeon;Hong, Se-Woon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.5
    • /
    • pp.51-65
    • /
    • 2024
  • With the advancement of Unmanned Aerial Vehicles (UAV) technology, aerial spraying has been rapidly increasing in the agricultural field. Drones offer many advantages compared to traditional applicators, but they pose challenges such as spray drift risk and spray uniformity. To address these issues, it is essential to understand the characteristics of complex airflow generated by drones and its consequences for the spray performance. This study aims to identify the air velocity distribution of drone downwash and the resulting spray deposition distribution on the ground, ultimately proposing optimized spraying widths and criteria. Experiments were conducted using two agricultural drones with different propeller arrangements under various flight and measurement conditions. The results showed that during hovering, the downward airflow affected the area within a distance of the radius of the blade (R) from the center of the drone. When the drone was flying, the downward airflow was effective up to a distance of 2R. Droplet deposition was concentrated at the center of the drone during hovering. However, during flying, the droplet deposition was more evenly distributed up to the distance of R. The drone downwash and droplet deposition were significantly different during flying compared to the hovering state. At an effective spray width of 3R, the coefficient of variation (CV) was generally less than 16%, indicating a significant improvement in spray uniformity. These findings help optimize effective spraying techniques in drone-based applications.

ROS- and pH-Responsive Polydopamine Functionalized Ti3C2Tx MXene-Based Nanoparticles as Drug Delivery Nanocarriers with High Antibacterial Activity

  • Wei-Jin Zhang;Shuwei Li;Veena Vijayan;Jun Seok Lee;Sung Soo Park;Xiuguo Cui;Ildoo Chung;Jaejun Lee;Suk-kyun Ahn;Jung Rae Kim;In-Kyu Park;Chang-Sik Ha
    • Nanomaterials
    • /
    • v.12 no.24
    • /
    • pp.4392-4416
    • /
    • 2022
  • Premature drug release and poor controllability is a challenge in the practical application of tumor therapy, which may lead to poor chemotherapy efficacy and severe adverse effects. In this study, a reactive oxygen species (ROS)-cleavable nanoparticle system (MXene-TK-DOX@PDA) was designed for effective chemotherapy drug delivery and antibacterial applications. Doxorubicin (DOX) was conjugated to the surface of (3-aminopropyl)triethoxysilane (APTES)-functionalized MXene via an ROS-cleavable diacetoxyl thioketal (TK) linkage. Subsequently, the surfaces of the MXene nanosheets were coated with pH-responsive polydopamine (PDA) as a gatekeeper. PDA endowed the MXene-TK-DOX@PDA nanoparticles with superior biocompatibility and stability. The MXene-TK-DOX@PDA nanoparticles had an ultrathin planar structure and a small lateral size of approximately 180 nm. The as-synthesized nanoparticles demonstrated outstanding photothermal conversion efficiency, superior photothermal stability, and a remarkable extinction coefficient (23.3 L g-1 cm-1 at 808 nm). DOX exhibited both efficient ROS-responsive and pH-responsive release performance from MXene-TK-DOX@PDA nanoparticles due to the cleavage of the thioketal linker. In addition, MXene-TK-DOX@PDA nanoparticles displayed high antibacterial activity against both Gram-negative Escherichia coli (E. coli) and Gram-positive Bacillus subtilis (B. subtilis) within 5 h. Taken together, we hope that MXene-TK-DOX@PDA nanoparticles will enrich the drug delivery system and significantly expand their applications in the biomedical field

Assessment of Water Quality and Pollutant Loads on Agricultural Watershed in Jeonbuk Province (전북지역 농업용 하천유역의 수질과 부하량 특성)

  • Uhm, Mi-Jeong;Moon, Young-Hun;Ahn, Byung-Koo;Shin, Yong-Kyu
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.2
    • /
    • pp.111-119
    • /
    • 2008
  • This study was conducted to evaluate water quality and pollutant loads on small agricultural watershed in Jeonbuk province. The EC level of investigated watershed ranged from 0.07 to 0.52 dS/m, BOD level ranged from 0.1 to 5.0 mg/L, and $COD_{Cr}$ level ranged from 0.6 to 17.7 mg/L. As above, contents of water quality indicators covered wide range, but each indicator was alike in mean content every other year. The contents of EC, $Ca^{2+},\;Mg^{2+},\;K^+\;and\;Na^+$ were decreased in rainy season, but the contents of BOD, $COD_{Cr},\;COD_{Mn}$, T-N and T-P were not greatly different as compared to dry season. And high content of SS showed substantial sediments near the surface flow out and influence on water system in rainy season. The pollutant loads measured in terminal of watershed were $9.6{\sim}757.9$ kg/day for BOD, $51.2{\sim}1418.5$ kg/day for T-N and $0.3{\sim}44.7$ kg/day for T-P. The pollutant loads of BOD, T-N and T-P in rainy season increased several times as compared to dry season. In rainy season, watershed with more than 30% in the proportion of paddy field to land showed relatively low discharge and pollutant loads in comparison to watershed with less than 30%. The discharge of watershed in rainy season increased 5.7times compared with the dry season in watershed with less than 30% in the proportion of paddy field to land, whereas was only 2.3times in watershed with more than 30%. The correlation coefficient($R^2$) of regression between discharge and pollutant loads of T-N were higher than those of BOD and T-P.

Genetic Analyses of Heading and Maturing Dates and Their Relationship to Freezing Resistance in Barley (보리 출수기와 성숙기의 유전분석 및 내동성과의 관계)

  • 천종은;강석원
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.6
    • /
    • pp.395-401
    • /
    • 2002
  • The combination of early heading time, maturing time and short grain-filling period is very important to develop early varieties in winter barley. The 4 parental half diallel crosses (parents, $F_1$s, $F_2$s) were cultivated at the field. The heading date was from April 3 to 26, maturing date from May 15 to 27 and grain-filling period from 31 days to 42 days, showing that the varietal differences about the 3 traits were remarkable. According to half diallel cross analyses, Dongbori 1 for heading time (late heading) was dominant, but Oweolbori (early heading) was recessive, showing partial dominance with high additive component of genetic variance. Dongbori 1 for maturing time was dominant, but Oweolbori was recessive, showing partial dominance with high additive variance. Reno for grain-filling period (short grain-filling period) was dominant, but Oweolbori (long grain-filling period) was recessive with additive, and partial dominance. There were highly significant mean squares for both GCA and SCA effects on the heading and maturing times, and GCA/SCA ratios for all traits were high, showing the additive gene effects more important. Sacheon 6 and Oweolbori had greater GCA effects for early heading and maturing times, and Dongbori 1 and Reno had greater GCA effects for late times. GCA effects were highly significant in $F_1$ and $F_2$ generations, showing high GCA/SCA ratios (7.02). The heading and maturing times in field were positively correlated with antifreeze proteins concentrations, accumulation, resistance to photoinhibition and winter survival, respectively) but the grain-filling period did negatively correlated with the trails.

Evaluation of Cold Tolerance in Rice Cultivars by the Characteristics Related to Chilling Injury -II. Transition Temperature of Respiratory Activity on Rice Cultivars and Cold Tolerance (수도(水稻) 품종(品種)의 냉해관련인자(冷害關聯因子) 특성(特性)에 의(依)한 내냉성(耐冷性) 평가(評價) -II. 호흡활성(呼吸活性) 전이온도(轉移溫度)와 내냉성(耐冷性))

  • Seok, Soon-Jong;Ha, Ho-Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.24 no.3
    • /
    • pp.200-205
    • /
    • 1991
  • To evaluate cold tolerance of rice cultivars on the basis of a relationship between cold tolerance in the field test and a biochemical character, transition-temperature of respiratory activity of mitochondria(TRM) which were isolated from different parts and at different growth stages and from etiolated rice seedling was investigated, and its relationship with degree of cold tolerance(DCT) in the field experiment was studied. The results obtained were summarized as follows. 1. The transition-temperature of respiratory activity of mitochodria (TRM) isolated from etiolated seedling ($25^{\circ}C$, two week-grown in the dark) of cold tolerant cultivars tended to be low, while that of cold susceptible cultivars to be high. 2. The correlation between TRM of etiolated seedling and the degree of cold tolerance(DCT) was $r=0.8935^{**}$ in 1988 and $r=0.8236^{**}$ in 1989. The correlation coefficient between TRM of 4-leaf seedling and DCT was $0.6239^{**}$ 3. TRM of young panicle was correlated with DCT except a few varieties. 4. TRM of seedling increased with growth as $12.5^{\circ}C$, $14.5^{\circ}C$, $15.5^{\circ}C$ and $16.5^{\circ}C$ at 1, 2, 3~4 and 5weeks respectively. 5. The transition temperature of mitochondrial respiratory activity was not significantly influenced by growth stages as $15.0{\sim}16.0^{\circ}C$ in Pungsanbyeo and $17.0{\sim}18.0^{\circ}C$ in Satbyelbyeo, while it was significantly different depending upon the degree of cold tolerance(tolerant, medium, susceptible).

  • PDF

Comparative Assessment of the Half-lives of Benfuresate and Oxolinic Acid Estimated from Kinetic Models Under Field Soil Conditions (포장조건에서 Kinetic Models로부터 산출한 Benfuresate 및 Oxolinic Acid의 토양중 반감기 비교평가)

  • Yang, Jae-E.;Park, Dong-Sik;Han, Dae-Sung
    • Korean Journal of Environmental Agriculture
    • /
    • v.14 no.3
    • /
    • pp.302-311
    • /
    • 1995
  • Benfuresate or oxolinic acid, as an experimental pesticide, was applied to the different textural paddy or upland soil respectively under the field condition and the residual concentrations were determined. Six kinetic models were employed to characterize the best-fit kinetic model describing the residual pattern of benfuresate or oxolinic acid and the $t\frac{1}{2}$ estimated from each model was comparatively assessed. All of the six models explained significantly the residual patterns of the pesticides but the empirical models such as PF, EL, and PB were not recommendable for the $t\frac{1}{2}$ estimation. Among theoretical models, the residual patterns were followed in the orders of the second-order(SO)>first-order(FO)>zero-order(ZO) kinetics, judging from the size and significance of coefficient of determination and standard error. However, the multiple FO model, consisting of the fast and slow decomposition steps, was better than the single FO model for the residual pattern and the $r^2$ in this case became similar to that of SO kinetic model. Thus the multiple FO and SO models were represented as the best fit model of the experimental pesticide. The $t\frac{1}{2}$ of benfuresate estimated from the single FO kinetic model in Weolgog and Cheongwon series was 49 and 63 days, respectively, which were 20 and 13% longer than the respective $t\frac{1}{2}$ from the SO kinetic model. The $t\frac{1}{2}$ of oxolinic acid from the FO model in Yonggye and Ihyeon series were 87 and 51% longer than those from the SO kinetic model, respectively. These results demonstrated that the best-fit model representing the residual pattern of a pesticide and the resultant $t\frac{1}{2}$ might be variable with the kinds of pesticides and the environmental conditions. Therefore it is recommended that the half-life of a pesticide be assessed from the best-fit model rather than from the FO kinetic model uniformly.

  • PDF