• Title/Summary/Keyword: field acceleration method

Search Result 207, Processing Time 0.026 seconds

Excitation Based Tunable Emissions from the Nanocrystalline $Ca_2Gd_8Si_6O_{26}$ : $Sm^{3+}/Tb^{3+}$ Phosphors for Novel Inorganic LEDs

  • Raju, G. Seeta Rama;Yu, Jae-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.156-156
    • /
    • 2011
  • Nanocrystalline $Ca_2Gd_8Si_6O_{26}$ (CGS) : $Sm^{3+}$ and CGS : $Tb^{3+}/Sm^{3+}$ phosphors were prepared by solvothermal reaction method for light emitting diode (LED) and field emission display (FED) applications. The XRD patterns of these phosphors confirmed their oxyapatite structure in the hexagonal lattice. The visible luminescence properties of these phosphors were investigated by exciting with ultraviolet (UV) or near-UV light and low voltage electron beam. The photoluminescence (PL) properties of $Ca_2Gd_8Si_6O_{26}$ (CGS) : $Sm^{3+}$ and CGS : $Tb^{3+}/Sm^{3+}$ phosphors were investigated as a function of $Sm^{3+}$ concentration. Cathodoluminescence (CL) properties were examined by changing the acceleration voltage. The CGS : $Sm^{3+}$ showed the dominant orange emission due to the $^4G_{5/2}{\rightarrow}^6H_{7/2}$ transition. The CGS : $Tb^{3+}/Sm^{3+}$ phosphor showed the green, white and orange emissions when excited with 275, 378, and 405 nm wavelengths, respectively. The chromaticity coordinates of these phosphors were comparable to or better than those of standard phosphors for LED or FED devices.

  • PDF

Development of a System Observing Worker's Physiological Responses and 3-Dimensional Biomechanical Loads in the Task of Twisting While Lifting

  • Son, Hyun Mok;Seonwoo, Hoon;Kim, Jangho;Lim, KiTaek;Chung, Jong Hoon
    • Journal of Biosystems Engineering
    • /
    • v.38 no.2
    • /
    • pp.163-170
    • /
    • 2013
  • Purpose: The purpose of this study is to provide analysis of physiological, biomechanical responses occurring from the operation to lifting or twist lifting task appears frequently in agricultural work. Methods: This study investigated the changes of physiological factors such as heart rate, heart rate variability (HRV) and biomechanical factors such as physical activity and kinetic analysis in the task of twisting at the waist while lifting. Results: Heart rates changed significantly with the workload. The result indicated that the workload of 2 kg was light intensity work, and the workload of 12 kg was hard intensity work. Physical activity increased as the workload increased both on wrist and waist. Besides, stress index of the worker increased with the workload. Dynamic load to herniated discs was analyzed using inertial sensor, and the angular acceleration and torque increased with the workload. The proposed measurement system can measure the recipient's physiological and physical signals in real-time and analyzed 3-dimensionally according to the variety of work load. Conclusions: The system we propose will be a new method to measure agricultural workers' multi-dimensional signals and analyze various farming tasks.

Vehicle Orientation Estimation by Using Magnetometer and Inertial Sensors (3축 자기장 센서 및 관성센서를 이용한 차량 방위각 추정 방법)

  • Hwang, Yoonjin;Choi, Seibum
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.4
    • /
    • pp.408-415
    • /
    • 2016
  • The vehicle attitude and sideslip is critical information to control the vehicle to prevent from unintended motion. Many of estimation strategy use bicycle model or IMU integration, but both of them have limits on application. The main purpose of this paper is development of vehicle orientation estimator which is robust to various vehicle state and road shape. The suggested estimator use 3-axis magnetometer, yaw rate sensor and lateral acceleration sensor to estimate three Euler angles of vehicle. The estimator is composed of two individual observers: First, comparing the known magnetic field and gravity with measured value, the TRIAD algorithm calculates optimal rotational matrix when vehicle is in static or quasi-static condition. Next, merging 3-axis magnetometer with inertial sensors, the extended Kalman filter is used to estimate vehicle orientation under dynamic condition. A validation through simulation tools, Carsim and Simulink, is performed and the results show the feasibility of the suggested estimation method.

Efficiency improvement of solar cell by back surface field (이면전계(BSF)에의한 solar cell의 효율개선효과)

  • 소대화;강기성;박정철
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1990.10a
    • /
    • pp.88-90
    • /
    • 1990
  • In this study, PN junction solar cell and P$\^$+/-N-N$\^$+/ BSF solar cell, using N-type(111), 10$\^$16/[atoms/cm$\^$-3/] wafer, were fabricated applying that ion implant method whose dose are 1E14, 1E15, 3E15 and its acceleration energy is 50Key, 100Key respectively. The impurity concentration of two types of front-side are 10$\^$18/[atoms/cm$\^$-3/] and back-side concentration for BSF solar cell is 10$\^$17/[atoms/cm$\^$-3/]. As a result of comparison for 2 typical types of cells out of various fabricated samples, open circuit voltage (Voc), short circuit current(Isc) of BSF solar cell are larger than those of PN solar cell by 48[%], 14[%]. Considering that the efficiency of BSF cell is 2.5[%] as well as PN solar cell's is 7.5[%], 10.0[%] of efficiency improvement effect can be obtained from BSF solar cell. Futhermore, in consequence of front-side impurity concentration change from 10$\^$17/[atoms/cm$\^$-3] to 10$\^$20/[atoms/cm$\^$-3/] alternately, the most ideal result can be expected when it is 10$\^$18/[atoms/cm$\^$-3/].

Cell Adhesion and Growth on Nanostructured Surface

  • Yoon, Seo Young;Park, Yi-Seul;Choi, Sung-Eun;Jung, Da Hee;Lee, Jin Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.93-93
    • /
    • 2013
  • To make the rationale design of interface between cell and artificial surface, many studies have been controlled influencing cue which can typically be divided into two central categories: chemical cues based on modification surface chemical properties containing attractive/repulsive molecules, and physical cues that may include applied tension/stress, electrical polarization, magnetic field, and topography. Recently, researches have been focused on physical cue, especially topography. The surface topography may influence cellular responses for example, cell adhesion, cell morphology and gene expression. However, there were few systematic studies about these nanotopographical effects on neuronal developments in a feature size-dependent manner. Herein, we report a nanoscale-resolved study of nanotopographical effects on cellular adhesion and growth. In this study, we use substrates with packed glass beads by rubbing method for generating highly periodic nanotopographies with various sizes. We found that acceleration of neuritogenesis appeared only on the beads larger than 200 nm in diameter, and observed that filopodial thickness was comparable with this scale. This study is expected to be essential to elucidate the nanotopographical effect on cellular adhesion and growth.

  • PDF

Dynamic assessment of the seismic isolation influence for various aircraft impact loads on the CPR1000 containment

  • Mei, Runyu;Li, Jianbo;Lin, Gao;Zhu, Xiuyun
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1387-1401
    • /
    • 2018
  • An aircraft impact (AI) on a nuclear power plant (NPP) is considered to be a beyond-design-basis event that draws considerable attention in the nuclear field. As some NPPs have already adopted the seismic isolation technology, and there are relevant standards to guide the application of this technology in future NPPs, a new challenge is that nuclear power engineers have to determine a reasonable method for performing AI analysis of base-isolated NPPs. Hence, dynamic influences of the seismic isolation on the vibration and structural damage characteristics of the base-isolated CPR1000 containment are studied under various aircraft loads. Unlike the seismic case, the impact energy of AI is directly impacting on the superstructure. Under the coupled influence of the seismic isolation and the various AI load, the flexible isolation layer weakens the constraint function of the foundation on the superstructure, the results show that the seismic isolation bearings will produce a large horizontal deformation if the AI load is large enough, the acceleration response at the base-mat will also be significantly affected by the different horizontal stiffness of the isolation bearing. These concerns require consideration during the design of the seismic isolation system.

The Application Technology of Korean-style R&D in Verification for deploying the Neo-Korean Style Public Building - Focused on the positivistic case R&D Technologies in Neo-Korean Style Public building

  • Kim, Young-Hoon;Peck, Yoo-Jung;Park, Joon-Young
    • KIEAE Journal
    • /
    • v.17 no.1
    • /
    • pp.5-13
    • /
    • 2017
  • Purpose: This study, by comprehensively the characteristics of new Hanok application techniques with the proposed site application technology in the course of the design changes that have been accumulated through Hanok technology development the second stage business, by analyzing the range of reflection, new Considering the direction reflects the efficiency of the new Hanok application techniques. Method: new Hanok application technology, it was been established through research and development of large 1 new Hanok technology it has been proposed through the "site-specific application techniques" and 2 builders and designers "space-time proposed technique" Analysis of the case, at the center of the design changes, the land the body of laws and regulations, the requirements of the public buildings, compared to the construction method and the like for the reduction of construction costs, new Hanok applied technology in the process of change by it There was analyzed whether acceleration on the range and step which is reflected in the design Result: The result of new Hanok applied technology was built through the demonstration build business case, process another major technology, foundation, woodwork, walls, roof, has been reflected in the ceiling construction, the inclusion of items in the proposed technique of construction , it was applied to the main steps in general, except for other construction work landscaping. Application techniques and construction proposal technology research team has presented, show the difference between the scope and method. With significance effort to improve the unreasonable traditional methods of these core processes that can be reflected in the field repeated the construction proposed technique as a result of the utility that can be applied for substantial construction.

Acceleration of Terrain Rendering Using Bounding Box Subdivision (바운딩 박스 세분화를 통한 지형 렌더링의 가속화)

  • Lee, Eun-Seok;Lee, Jin-Hee;Jo, In-Woo;Shin, Byeong-Seok
    • Journal of Korea Game Society
    • /
    • v.11 no.6
    • /
    • pp.71-80
    • /
    • 2011
  • Recent terrain rendering applications such as 3D games and virtual reality, use GPU-based ray-casting method for rendering high-quality scenes in realtime. As the size of terrain dataset grows bigger, the rendering speed will be decreased by the increase of the number of texture samplings. To accelerate the conventional ray-casting, we propose an efficient ray casting method with subdivided bounding boxes which are based-on GPU quadtree traversal. The subdivision of the terrain's bounding box can reduce the empty spaces effectively. By performing the ray-casting with this compact bounding box, we can efficiently reduce computation with empty space skipping. Unlike the recent quadtree-based empty space skipping techniques which perform the tree traversal at each ray, our method traverses the tree only once per frame. Therefore, we can save much computational time.

Evaluation of Testing Method for Quality Control of Chloride Diffusivity in Concrete under chloride attack environment (콘크리트 구조물의 염해 내구성능 검토를 위한 현장 품질관리 시험법 검토)

  • Kim, Hong-Sam;Cheong, Hai-Moon;Ahn, Tae-Song;Kim, Cheol-Ho;Geon, Byung-Sub
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.973-976
    • /
    • 2008
  • Recently, it is increasingly reported that the deterioration of concrete structure under marine environments is due to diffusion and penetration of chloride ions. It is very important to estimate the diffusion coefficient of chloride ion in concrete. Estimation methods of chloride diffusivity by concentration difference is time-consuming. Therefore, chloride diffusivity of concrete is mainly conducted by electrically accelerated method, which is accelerating the movement of chloride ion by potential difference. However, there has not been any proper method for field quality control to closely determine the diffusion coefficient of chloride ion through accelerated tests using potential difference. In this paper, the various test methods for determination of chloride diffusion coefficient in concrete were investigated through comparison accelerated tests. From the results of estimated diffusion coefficient of chloride ion, relationship between the ponding test and acceleration test was examined.

  • PDF

Smart Safety Management System based on ICT Sensor (ICT 센서를 기반한 스마트 안전관리 시스템)

  • Lee, Seung-Chul;Joung, Young-Su;Cho, Min-Jun;Jeon, Dong-Ju;Baek, Uk-Jin;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.542-545
    • /
    • 2022
  • Recently, the Act on the Punishment of Severe Disasters has drawn attention to the construction environment. A common way to check the safety management of the construction site is for workers to check the site with their own eyes. However, this method is inevitably affected by the limitations of workers' abilities, resulting in fatigue and reduced work efficiency. For this reason, it cannot be an efficient method. Thus, we intend to help the working environment and construction site safety through this study, by proposing an efficient ICT safety management system that can supplement the above methods. In this paper explain the design of the access management system using RFID and the field information monitoring method through noise sensors and fine dust sensors. In addition, we propose a system that can prevent accidents between heavy equipment and people with a PIR sensor, and prevent safety accidents by grasping the slope of the building being worked through a gyro sensor.

  • PDF