• 제목/요약/키워드: field acceleration method

검색결과 206건 처리시간 0.026초

Gaussian mixture model for automated tracking of modal parameters of long-span bridge

  • Mao, Jian-Xiao;Wang, Hao;Spencer, Billie F. Jr.
    • Smart Structures and Systems
    • /
    • 제24권2호
    • /
    • pp.243-256
    • /
    • 2019
  • Determination of the most meaningful structural modes and gaining insight into how these modes evolve are important issues for long-term structural health monitoring of the long-span bridges. To address this issue, modal parameters identified throughout the life of the bridge need to be compared and linked with each other, which is the process of mode tracking. The modal frequencies for a long-span bridge are typically closely-spaced, sensitive to the environment (e.g., temperature, wind, traffic, etc.), which makes the automated tracking of modal parameters a difficult process, often requiring human intervention. Machine learning methods are well-suited for uncovering complex underlying relationships between processes and thus have the potential to realize accurate and automated modal tracking. In this study, Gaussian mixture model (GMM), a popular unsupervised machine learning method, is employed to automatically determine and update baseline modal properties from the identified unlabeled modal parameters. On this foundation, a new mode tracking method is proposed for automated mode tracking for long-span bridges. Firstly, a numerical example for a three-degree-of-freedom system is employed to validate the feasibility of using GMM to automatically determine the baseline modal properties. Subsequently, the field monitoring data of a long-span bridge are utilized to illustrate the practical usage of GMM for automated determination of the baseline list. Finally, the continuously monitoring bridge acceleration data during strong typhoon events are employed to validate the reliability of proposed method in tracking the changing modal parameters. Results show that the proposed method can automatically track the modal parameters in disastrous scenarios and provide valuable references for condition assessment of the bridge structure.

콘크리트궤도 침목간격과 궤도지지강성이 진동에 미치는 영향 (The Effect of Sleeper Space and Support Stiffness in Concrete Track on Vibration of Structure)

  • 성덕룡;김상진;양태경;장기성;박용걸
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 춘계학술대회 논문집
    • /
    • pp.725-732
    • /
    • 2011
  • The vibration resulting from railway operation is transmitted through the tunnel to adjacent buildings and the transmitted vibration radiates structure-borne noise which is causing a lot of public complaints by its negative effects to the buildings near tunnel. This study performed the parametric study about sleeper space and track support stiffness in order to reduce vibration on the concrete track and near structures. In this study, it was compared and performed vibration analysis and field test about these. In addition, as changing the sleeper space and track support stiffness, vibration of the structures was evaluated. Via this study, in terms of reducing the figure of the sleeper space and track support stiffness to the half, as vibrating acceleration transmitted through concrete round is getting reduced, it transmitted through the tunnel was analysed to the same phenomena. In conclusion, suggested track structure into this study, it can be applied to the track structure of existing line, and it is expected to be a new effective anti-vibration method to prevent public complaints.

  • PDF

System identification of a super high-rise building via a stochastic subspace approach

  • Faravelli, Lucia;Ubertini, Filippo;Fuggini, Clemente
    • Smart Structures and Systems
    • /
    • 제7권2호
    • /
    • pp.133-152
    • /
    • 2011
  • System identification is a fundamental step towards the application of structural health monitoring and damage detection techniques. On this respect, the development of evolved identification strategies is a priority for obtaining reliable and repeatable baseline modal parameters of an undamaged structure to be adopted as references for future structural health assessments. The paper presents the identification of the modal parameters of the Guangzhou New Television Tower, China, using a data-driven stochastic subspace identification (SSI-data) approach complemented with an appropriate automatic mode selection strategy which proved to be successful in previous literature studies. This well-known approach is based on a clustering technique which is adopted to discriminate structural modes from spurious noise ones. The method is applied to the acceleration measurements made available within the task I of the ANCRiSST benchmark problem, which cover 24 hours of continuous monitoring of the structural response under ambient excitation. These records are then subdivided into a convenient number of data sets and the variability of modal parameter estimates with ambient temperature and mean wind velocity are pointed out. Both 10 minutes and 1 hour long records are considered for this purpose. A comparison with finite element model predictions is finally carried out, using the structural matrices provided within the benchmark, in order to check that all the structural modes contained in the considered frequency interval are effectively identified via SSI-data.

얇은 산화막의 TDDB 특성과 막내의 결함과의 상관성 (Time-Dependent Dielectric Breakdown Characteristics of Thin $SiO_2$ Films and Their Correlation to Defects in the Oxide)

  • 성영권;최종일;김상영;한성진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1988년도 추계학술대회 논문집 학회본부
    • /
    • pp.147-150
    • /
    • 1988
  • Since the integration level of VLSI circuits progresses very quickly, a highly reliable thin $SiO_2$ film is required to fabricate a small-geometry MOS device. In the present study we have attempted to eliminate the failure-causing defects that develop in thin oxide films during the oxidation step by performing a long-time preoxidation and postoxidation annealing. The TDDB test and the copper decoration method were used to calculate the oxide defects density of MOS device. The dielectric reliability of high-quality thin oxides have been studied by using the time-zero-dielectric-breakdown (ramp-voltage-stressed I-V) and time-dependent-dielectric -breakdown (Constant-stressed I-V) tests. Failure times against temperature and electric field are examined and acceleration factors are abtained for each parameter. Based on the data obtained, breakdown wearout limitation for thin oxide films is estimated.

  • PDF

전자상거래 유통물류 패키징의 국내 물류환경부하 분석 (Analysis on the Distribution Environmental Loads of the Parcel Packaging Delivered by Means of E-Commerce in Korea)

  • 서상욱;임미진;오재영
    • 한국포장학회지
    • /
    • 제23권2호
    • /
    • pp.103-108
    • /
    • 2017
  • The amount of delivered parcels have been increasing according to the change and expansion of consumption pattern through e-commerce, and they are required to minimize breakout or failure under the delivery. In this study, we measured and analyzed the distribution environment data (vibration and impact) occurred in the packaging, which were prepared with 5 types by the weight and dimension, distributed from Seoul to Busan in Korea by 2 parcel delivery service companies through e-commerce order. Date showed the parcels had 3-5 times of drop impact and 0.3-0.7 m of drop height on average, and 0.8 Grms of vibration acceleration from equivalent equation to the vertical direction. The significant gap in service quality was not found between 2 parcel delivery service companies. This study is expected to be useful for designing the suitable packaging in order to enhance safe transportation of the delivered packaging, and furthermore useful for developing Korean testing method for Field-to-Lab simulation.

ARX모델기반 가상센싱을 통한 사장교 케이블의 장력 추정 (Estimation of Cable Tension Force by ARX Model-Based Virtual Sensing)

  • 최가희;신수봉
    • 한국지진공학회논문집
    • /
    • 제21권6호
    • /
    • pp.287-293
    • /
    • 2017
  • Sometimes, it is impossible to install a sensor on a certain location of a structure due to the size of a structure or poor surrounding environments. Even if possible, sensors can be frequently malfunctioned or improperly operated due to lack of adequate maintenance. These kind of problems are solved by the virtual sensing methods in various engineering fields. Virtual sensing technology is a technology that can measure data even though there is no physical sensor. It is expected that this technology can be also applied to the construction field effectively. In this study, a virtual sensing technology based on ARX model is proposed. An ARX model is defined by using the simulated data through a structural analysis rather than by actually measured data. The ARX-based virtual sensing model can be applied to estimate unmeasured response using a transfer function that defines the relationship between two point data. In this study, a simulation and experimental study were carried out to examine the proposed virtual sensing method with a laboratory test on a cable-stayed model bridge. Acceleration measured at a girder is transformed to estimate a cable tension through the ARX model-based virtual sensing.

Field Adaptability Test for the Full Load Rejection of Nuclear Turbine Speed Controllers using Dynamic Simulator

  • Choi, In-Kyu;Kim, Jong-An;Woo, Joo-Hee
    • 조명전기설비학회논문지
    • /
    • 제23권7호
    • /
    • pp.67-74
    • /
    • 2009
  • This paper describes the speed control functions of the typical steam turbine speed controllers and the test results of generator load rejection simulations. The goal of the test is to verify the speed controller's ability to limit the steam turbine's peak speed within a predetermined level in the event of generator load loss. During normal operations, the balance between the driving force of the steam turbine and the braking force of the generator load is maintained and the speed of the turbine-generator is constant. Upon the generator's load loss, in other word, the load rejection, the turbine speed would rapidly increase up to the peak speed at a fast acceleration rate. It is required that the speed controller has the ability to limit the peak speed below the overspeed trip point, which is typically 110[%] of rated speed. If an actual load rejection occurs, a substantial amount of stresses will be applied to the turbine as well as other equipments, In order to avoid this unwanted situation, not an actual test but the other method is necessary. We are currently developing the turbine control system for another nuclear power plant and have plan to do the simulation suggested in this paper.

PROCESS OF DESIGNING BODY STRUCTURES FOR THE REDUCTION OF REAR SEAT NOISE IN PASSENGER CAR

  • Kim, K.C.;Kim, C.M.
    • International Journal of Automotive Technology
    • /
    • 제8권1호
    • /
    • pp.67-73
    • /
    • 2007
  • This study analyzes the interior noise that is generated during acceleration of a passenger car in terms of car body structure and panel contribution. According to the transfer method, interior noise is classified into structure-borne noise and air-borne noise. Structure-borne noise is generated when the engine's vibration energy, an excitation source, is transferred to the car body through the engine mount and the driving system and the panel of the car body vibrates. When structure-borne noise resonates in the acoustic cavity of the car interior, acute booming noise is generated. This study describes plans for improving the car body structure and the panel form through a cause analysis of frequency ranges where the sound pressure level of the rear seat relative to the front seat is high. To this end, an analysis of the correlation between body attachment stiffness and acoustic sensitivity as well as a panel sensitive component analysis were conducted through a structural sound field coupled analysis. Through this study, via research on improving the car body structure in terms of reducing rear seat noise, stable performance improvement and light weight design before the proto-car stage can be realized. Reduction of the development period and test car stage is also anticipated.

사장교의 구조식별을 위한 가진실험 데이터분석 (FVT Signal Processing for Structural Identification of Cable-stayed Bridge)

  • 이정휘;김정인;윤자걸
    • 한국소음진동공학회논문집
    • /
    • 제14권10호
    • /
    • pp.923-929
    • /
    • 2004
  • In this research, Forced Vibration Test(FVT) on a cable stayed bridge was conducted to examine the validity of the frequency domain pattern recognition method using signal anomaly index and artificial neuralnetwork. 7he considering structure, Samchunpo Bridge, located in Sachun-Shi, Kyungsangnam-Do, is a cable stayed bridge with the 436 meter span. The excitation force was induced by a sudden braking of a fully loaded truck. and vortical acceleration signals were acquired at 14 points. The initial 2-dimensional FE-model was developed from the design documents to prepare the training sets for the artificial neural network, and then the model calibration was performed with the field test data. As a result of the model calibration, we obtained the FFT spectrums from the model simulation, which was similar to those from the vibration test. These tests and the simulation data will be used for the structural identification using arbitrarily added masses to the bridge.

사장교의 구조식별을 위한 가진실험 데이터분석 (FVT Signal Processing for Structural Identification of Cable-Stayed Bridge)

  • 윤자걸;이정휘;김정인
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.619-623
    • /
    • 2003
  • In this research, Forced Vibration Test(FVT) on a cable stayed bridge was conducted to examine the validity of the frequency domain pattern recognition method using signal anomaly index and artificial neural network. The considering structure, Samchunpo Bridge, located in Sachun-Shi, Kyungsangnam-Do, is a cable stayed bridge with the 436 meter span. The excitation force was induced by a sudden braking of a fully loaded truck, and vertical acceleration signals were acquired at 14 points. The initial 2-dimensional FE-model was developed from the design documents to prepare the training sets for the artificial neural network, and then the model calibration was performed with the field test data. As a result of the model calibration, we obtained the FFT spectrums from the model simulation, which was similar to those from the vibration test. These tests and the simulation data will be used fur the structural identification using arbitrarily added masses to the bridge.

  • PDF