• Title/Summary/Keyword: fictitious beam

Search Result 17, Processing Time 0.023 seconds

A Study on the Confinement of Concrete from Splitting Bond Failure (부착할열파괴에 대한 콘크리트의 횡구속에 관한 연구)

  • 최완철;정일영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.04a
    • /
    • pp.74-79
    • /
    • 1992
  • The confinement of concrete from splitting bond failure is studied with the experiments and finite element models. The cracks in the test beam-end specimens containing various covers show a typical splitting failure with a dominant fracture surface. The finite element model includes representation of the splitting cracking using Hillerborg's fictitious crack model. The increase in bond strength from addition of covers are consistant for both test bars and numerical models. The numerical solution agrees well with results and also with the test results and also with the empirical equations. The splitting crack in the numerical models generally matches the crack surface observed in the laboratory. The confinement of concrete from splitting is one of the governing factors in the ultimate bond force.

  • PDF

Computer aided reinforcement design of RC structures

  • An, Xuehui;Maekawa, Koichi
    • Computers and Concrete
    • /
    • v.1 no.1
    • /
    • pp.15-30
    • /
    • 2004
  • In this study, a design process for reinforced concrete structures using the nonlinear FEM analysis is developed. Instead of using the nonlinear analysis to evaluate the required performance after design process, the nonlinear analysis is applied before designing the reinforcement arrangement inside the RC structures. An automatic reinforcement generator for computer aided reinforcement agreement is developed for this purpose. Based on a nonlinear FEM program for analyzing the reinforced concrete structure, a smart fictitious material model of steel, is proposed which can self-adjust the reinforcement to the required amount at the cracking location according to the load increment. Using this tool, the reinforcement ratio required at design load level can be decided automatically. In this paper, an example of RC beam with opening is used to verify the proposed process. Finally, a trial design process for a real size underground RC LNG tank is introduced.

Use of Super Elements for Efficient Analysis of Flat Plate Structures (플랫플레이트 구조물의 효율적인 해석을 위한 수퍼요소의 활용)

  • 김현수;이승재;이동근
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.4
    • /
    • pp.439-450
    • /
    • 2003
  • Flat plate system has been adopted in many buildings constructed recently because of the advantage of reduced floor heights to meet the economical and architectural demands. Structural engineers commonly use the effective beam width model(EBWM) in practical engineering for the analysis of flat plate structures. However, in many cases, when it is difficult to use the EBWM, it is necessary to use a refined finite element model for an accurate analysis. But it would take significant amount of computational time and memory if the entire building structure was subdivided with finer meshes. An efficient analytical method is proposed in this study to obtain accurate results in significantly reduced computational time. The proposed method employs super elements developed using the matrix condensation technique and fictitious beams are used in the development of super elements to enforce the compatibility at the interfaces of super elements. The stiffness degradation of flat plate system considered in the EBWM was taken into account by reducing the elastic modulus of floor slabs in this study. Static and dynamic analyses of example structures were performed and the efficiency and accuracy of the proposed method were verified by comparing the results with those of the refined finite element model and the EBWM.

Prediction of chloride diffusion coefficient of concrete under flexural cyclic load

  • Tran, Van Mien;Stitmannaithum, Boonchai;Nawa, Toyoharu
    • Computers and Concrete
    • /
    • v.8 no.3
    • /
    • pp.343-355
    • /
    • 2011
  • This paper presented the model to predict the chloride diffusion coefficient in tension zone of plain concrete under flexural cyclic load. The fictitious crack based analytical model was used together with the stress degradation law in cracked zone to predict crack growth of plain concrete beams under flexural cyclic load. Then, under cyclic load, the chloride diffusion, in the steady state and one dimensional regime, through the tension zone of the plain concrete beam, in which microcracks were formed by a large number of cycles, was simulated with assumptions of continuously straight crack and uniform-size crack. The numerical analysis in terms of the chloride diffusion coefficient, $D_{tot}$, normalized $D_{tot}$, crack width and crack length was issued as a function of the load cycle, N, and load level, SR. The nonlinear model as regarding with the chloride diffusion coefficient in tension zone and the load level was proposed. According to this model, the chloride diffusion increases with increasing load level. The predictions using model fit well with experimental data when we adopted suitable crack density and tortuosity parameter.

Use of Super Elements and Substructures for Three Dimensional Analysis of the Box System with Openings (개구부가 있는 벽식구조물의 3차원해석을 위한 슈퍼요소와 부분구조의 이용)

  • 이동근;김현수;남궁계홍
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.3-10
    • /
    • 2001
  • The box system that is composed only of reinforced concrete walls and slabs are adopted on many high-rise apartment buildings recently constructed in Korea. And the framed structure with shear wall core that can effectively resist horizontal forces is frequently adopted for the structural system for high-rise building structures. In these structures, a shear wall may have one or more openings for functional reasons. It is necessary to use subdivided finite elements for accurate analysis of the shear wall with openings. But it would take tremendous amount of computational time and memory if the entire building structure is subdivided into a finer mesh . An efficient analysis method that can be used regardless of the number, size and location of openings is proposed in this study, The analysis method uses super element, substructure, matrix condensation technique and fictitious beam technique. Three-dimensional analyses of the box system and the framed structure with shear wall core having various types of openings were performed to verify the efficiency of the proposed method. It was confirmed that the proposed method have outstanding accuracy with drastically reduced time and computer memory from the analyses of example structures.

  • PDF

Efficient dynamic analysis of shear wall building structures with various types of openings (다양한 형태의 개구부를 가진 전단벽식 구조물의 효율적 인 동적 해석)

  • 김현수;이승재;이동근
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.329-336
    • /
    • 2003
  • The box system that is composed only of reinforced concrete walls and slabs are adopted on many high-rise apartment buildings recently constructed in Korea. And the framed structure with shear wall core that can effectively resist horizontal forces is frequently adopted for the structural system for high-rise building structures. In these structures, a shear wall may have one or more openings for functional reasons. It is necessary to use subdivided finite elements for accurate analysis of the shear wall with openings. But it would take significant amount of computational time and memory if the entire building structure is subdivided into a finer mesh. An efficient analysis method that can be used regardless of the number, size and location of openings is proposed in this study. The analysis method uses super element, substructure, matrix condensation technique and fictitious beam technique. Three-dimensional analyses of the box system and the framed structure with shear wall core having various types of openings were peformed to verify the efficiency of the proposed method. It was confirmed that the proposed method have outstanding accuracy with drastically reduced time and computer memory from the analyses of example structures.

  • PDF

Diagonal Tension Failure Model for RC Slender Beams without Shear Reinforcement Based on Kinematical Conditions (I) - Development

  • You, Young-Min;Kang, Won-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.6
    • /
    • pp.7-15
    • /
    • 2007
  • A mechanical model was developed to predict the behavior of point-loaded RC slender beams (a/d > 2.5) without stirrups. It is commonly accepted by most researchers that a diagonal tension crack plays a predominant role in the failure mode of these beams, but the failure mechanism of these members is still debatable. In this paper, it was assumed that diagonal tension failure was triggered by the concrete cover splitting due to the dowel action at the initial location of diagonal tension cracks, which propagate from flexural cracks. When concrete cover splitting occurred, the shape of a diagonal tension crack was simultaneously developed, which can be determined from the principal tensile stress trajectory. This fictitious crack rotates onto the crack tip with load increase. During the rotation, all forces acting on the crack (i.e, dowel force of longitudinal bars, vertical component of concrete tensile force, shear force by aggregate interlock, shear force in compression zone) were calculated by considering the kinematical conditions such as crack width or sliding. These forces except for the shear force in the compression zone were uncoupled with respect to crack width and sliding by the proposed constitutive relations for friction along the crack. Uncoupling the shear forces along the crack was aimed at distinguishing each force from the total shear force and clarifying the failure mechanism of RC slender beams without stirrups. In addition, a proposed method deriving the dowel force of longitudinal bars made it possible to predict the secondary shear failure. The proposed model can be used to predict not only the entire behavior of point-loaded RC slender shear beams, but also the ultimate shear strength. The experiments used to validate the proposed model are reported in a companion paper.