• Title/Summary/Keyword: fibroin aqueous solution

Search Result 28, Processing Time 0.025 seconds

Molecular Weight Distribution of Regenerated Silk Fibroin in Aqueous Solution

  • Jeong, Jae-Ho;Hur, Won
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.621-625
    • /
    • 2003
  • In order to investigate the properties of aqueous fibroin solution, the molecular weight distribution of silk fibroin was determined by gel filtration chromatography. The molecular weights spreaded from 200 kDa to less than 20 kDa. The distribution of molecular weight was significantly affected when the pH of solubilization solution is less than 1. Distributions of fibroin solution stored at various condition were also investigated.

  • PDF

Fluorescent Silk Fibroin Nanoparticles Prepared Using a Reverse Microemulsion

  • Myung, Seung-Jun;Kim, Hun-Sik;Kim, Yeseul;Chen, Peng;Jin, Hyoung-Joon
    • Macromolecular Research
    • /
    • v.16 no.7
    • /
    • pp.604-608
    • /
    • 2008
  • Color dye-doped silk fibroin nanoparticles were successfully fabricated using a microemulsion method. An aqueous silk fibroin solution was prepared by dissolving cocoons (Bombyx mori) in a concentrated lithium bromide solution followed by dialysis. A color dye solution was also mixed with the aqueous silk fibroin solution. The surfactants used for the microemulsion were then removed by methanol and ethanol, yielding color dye-doped silk fibroin nanoparticles, approximately 167 nm in diameter. The secondary structure of the nanoparticles showed a $\beta$-sheet conformation, as characterized by Fourier transform infrared spectroscopy. The morphology of the nanoparticles was determined by field emission scanning electron microscopy, transmission electron microscopy and atomic force microscopy, and their size and size distribution were measured by dynamic light scattering. The color dye-doped silk fibroin nanoparticles were examined by confocal laser scanning microscopy.

The Effect of Dissolution Condition on the Yield, Molecular Weight, and Wet- and Electro-spinnability of Regenerated Silk Fibroins Prepared by LiBr Aqueous Solution

  • Cho, Hee-Jung;Um, In-Chul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.20 no.2
    • /
    • pp.99-105
    • /
    • 2010
  • In this paper, the regenerated silk fibroins were dissolved in LiBr aqueous solution with different dissolution temperature and time, and the effects of the dissolution condition on the regeneration yield, molecular weight, wet spinnability, and electrospinnability of regenerated silk fibroin were investigated. The regeneration yield, molecular weight distribution, and wet spinnability of regenerated silk fibroin were nearly affected by the dissolution temperature and time. However, the electrospinning performance of silk fibroin was influenced by the dissolution condition implying the electrospinning of silk fibroin is more sensitive process than the wet spinning in the range tested in this study. While $25^{\circ}C$ of dissolution temperature resulted in a good electrospinnability of regenerated silk fibroin, the electrospinnability was slightly deteriorated when silk fibroin was dissolved at $60^{\circ}C$ for 6 hours. Also, though the fiber diameters of electrospun silk fibroin produced by the dissolution at $25^{\circ}C$ for 6 hours and 24 hours were 443 and 451 nm, respectively, that at $60^{\circ}C$ for 5 min was reduced to 411 nm. The fiber diameter was more decreased to 393 nm when the dissolution time increased up to 6 hours at $60^{\circ}C$.

Preparation and Structural Characterization of Silk Fibroin Powder and Film (견 피브로인 분말과 필름의 제조 및 구조 분석)

  • 최해경;남중희
    • Journal of Sericultural and Entomological Science
    • /
    • v.37 no.2
    • /
    • pp.142-153
    • /
    • 1995
  • This study is undertaken to investigate proper condition and dissolution method of silk fibroin to use it functional material as powder or membrane. Silk fibroin was dissolved with calcium chloride ethanol aqueous solution and hydrochloric acid. When silk fibron was dissolved with calcium chloride ehanol aqueous solution, main chain of silk fibroin was degradaded and molecular conformation was changed. Silk fibroin powder was made from silk fibroin solution. It showed lower thermal decomposition temperature and crystallinity than those of native silk fibroin. And Its molecular conformation was random coil structure. By acid gydrolysis, main chain of silk fibroin was attacked randomly. Silk fibroin powder from hydrolysate showed high crystallinity and thermal decomposition temprature. $\beta$-form molecular conformation was found by IR and X-ray diffraction. Silk fibroin powder form dissolved part with hydrochloric acid showed low thormal decomposition temperature but high crystallinity. During acid hydrolysis, transition of molecular structure of silk fibroin occurred, and it changed to $\alpha$-helix. Silk fibroin film was achieved by casting silk fibroin solution by ehanol solution or saturated vapor treatment, and its molecular conformation changed to $\beta$structure.

  • PDF

Structural Charateristics of Silk Fibroin Gel on The Preparation Conditions (Silk Fibroin Gel의 제조조건에 따른 구조특성)

  • Lee, Kwang-Gill;Lee, Young-Woo;Yeo, Joo-Hong;Nam, Jin;Kweon, Hae-Young;Park, Young-Hwan
    • Journal of Sericultural and Entomological Science
    • /
    • v.41 no.1
    • /
    • pp.41-47
    • /
    • 1999
  • Silk fibroin dissolved in highly concentrated calcium chloride and ethanol mixture aqueous solution turned into gel under suitable conditions. Preparation conditions and properties of gel were investigated as a function of parameters such as pH of solution, fibroin concentration, glycerol concentration and molecular weight. When pH of silk fibroin aqueous solution was near the isoelectronic point(pH 3.9~4.0), gelation occurred rapidly and strength of gel was stonger than that of pH-unadjusted due to electrostatic repulsion decrease between silk fibroin macromolecules. As concentration of silk fibroin and glycerol was higher, gelation occurred more rapid. FT Infra-red spectra of freeze-dried fibroin gel showed that gelation was derived by intermolecular anti-parallel ${\beta}$-sheet structure formation. In addition to, it was found that white-precipitate occurred instead of gelation when aqueous silk fibroin was treated by enzyme(flavouzyme), however, after flavouzyme-treated silk fibroin aqueous solution was centrifugated gelation occurred instantly. The results of differential scanning thermal analysis and infra-red spectroscopy showed that thermal stability and crystallinity of enzyme-hydrolyzed fibroin are superior to those of unhydrolyzed fibroin.

  • PDF

The Effect of Molecular Weight on the Gelation Behavior of Regenerated Silk Solutions

  • Cho, Hee-Jung;Um, In-Chul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.23 no.1
    • /
    • pp.183-186
    • /
    • 2011
  • The various molecular weight (MW) regenerated silk fibroins were prepared with different dissolution condition and the effect of MW on the gelation behavior of regenerated aqueous silk fibroin (SF) solution was investigated. The result of gelation time measurement indicated that the gelation of SF aqueous solution was accelerated by the increase of MW and SF concentration. When formic acid was added in SF aqueous solution, the gelation time of SFL and SFC30 aqueous solution showed a significant decreaseat 0.03% formic acid addition. In case of the lowest MW sample, SFC180, SF molecules became aggregated and precipitated without gelation after 28 days storage time. These findings indicate that MW control of SF can be utilized to control the gelation time of SF aqueous solution.

Aggregation of Fibroin Molecular in Aqueous Solution

  • Son, Hyo-Jin;Hur, Won;Jeong, Jae-Ho;Kim, Ji-Young
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.634-638
    • /
    • 2003
  • For the investigation of the properties of aqueous fibroin solution, the variation of molecular weight by agregation of silk, morphology and difference of molecular weight at pI value was investigated. The distribution of molecular weight investigated using gel filtration chromatography and formation of aggregates were confirmed by using Field emission scanning electron microscope. The precipitation of fibroin solution at its pI value was compared by molecular weight distribution and the formation of fibroin aggregated were investigated. The aggregation kinetics were investigated at various condition.

  • PDF

Studies on Silk Fibroin Membranes(I) -Structure of Silk Fibroin Membranes and Their properties- (Silk Fibroin 막에 관한 연구(I) -Silk Fibroin막의 구조특성-)

  • 최해욱;박수민;김경환
    • Textile Coloration and Finishing
    • /
    • v.6 no.1
    • /
    • pp.62-70
    • /
    • 1994
  • Silk fibroin was dissolved in 9.3 M LiBr aqueous solution at 4$0^{\circ}C$ for 1 hour. The dissolved silk fibroin was regenerated by casting the dialyzed solution into the membrane. The freshly prepared silk fibroin membrane was soluble in water and was. mainly consisted of random coil conformation. By the treatments in saturated water vapor at 3$0^{\circ}C$ and in 75% ethanolic aqueous solution (V/V), the insoluble membranes were obtained and the structure and morphology of those were investigated for the structure by means of X-ray diffraction analysis, infrared spectroscopy, thermal analysis. Rheovibron and scanning electron micrograph. Silk II type crystals were obtained by treating amorphous silk fibroin membrane in the random coil conformtion with 75% ethanol solution(V/V). Crystallization to silk II type crystals occured even after a few minutes, and a large number of silk II type crystals were formed after 30 mins. On the other and, the membrane treated in saturated water vapor was composed of the mixtures of silk I and silk II type crystals. A large number of silk I and silk II type crystals were formed after 24 hours. The micro brownian motion in the amorphous regions of silk fibroin membrane started at about 175~185$^{\circ}C$. $\alpha$ dispersion appeared at about 20$0^{\circ}C$ in the amorphous membrane, and at about 22$0^{\circ}C$ in the crystalline membrane. The crystallization of random coil conformation to silkII type crystals occured at about 215$^{\circ}C$. The surface, bottom and cross-section of the membranes were observed by scanning electrom microscope. Fine forms alike spherulites appeared at the surface of crystalline membrane.

  • PDF

Synthesis of Size Controllable Silk Fibroin Microparticles and Their Stability on Different Solutions

  • Aryal, Susmita;Yu, Chan Yeong;Cho, Hyeyoun;Choi, Seung Ho;Key, Jaehong
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.251-258
    • /
    • 2022
  • Silk fibroin microparticles were fabricated using a phase separation technique between silk fibroin solution and polyvinyl alcohol. We found that the concentration of polyvinyl alcohol determines the size of microparticles. The mean diameter of the silk fibroin microparticles varied from 3.48 ㎛ to 4.05 ㎛. The silk fibroin microparticle size increased as a function of the concentration of PVA in aqueous silk solution. The resulting silk fibroin microparticles have narrow size distribution (i.e. monodisperse) and smooth/spherical surface. Also, we studied the effects of mouse serum, sodium phosphate buffer (PBS), and pH on the stability of the silk fibroin microparticles. Overall, we demonstrated the simple method to fabricate and to control the silk fibroin microparticles that makes our silk microparticles to be usable for a potential drug delivery carrier.

Physicochemical Characteristics of Silk Fibroin Degummed by Protease in Bacillus licheniformis II. Behavior in Aqueous Solution of Silk fibroin (Bacillus licheniformis 단백질 분해 효소에 의한 정련 견사의 특성 III. 견 피브로인 수용액의 거동)

  • 김영대;남중희
    • Journal of Sericultural and Entomological Science
    • /
    • v.35 no.1
    • /
    • pp.60-68
    • /
    • 1993
  • It has been known that the silk degumming treated by hot alkali solution is easy to handle but is liable to yield poor-quality silk due to the degree of degumming loss, incomplete-degumming or over-degumming. Therefore, many studies have been carried out on the silk degumming by enzyme in order to improve the quality of silk. However, no attention has been paid to the physicochemical analysis of enzymatic degummed silk. In this paper, two different degumming methods, soap and enzymatic, are compared in aqueous solution state of silk fibroin. The results can be summarized as follows: There was no significant difference between two solutions on the bases of polarizing microscopy, TEM observation and SDS-PAGE. Spherulite of silk fibroin was not observed in polarizing microscopy, however the leaf-shape fibril structure was developed upon solidification. The size of spherulites of silk fibroin in TEM observation were 30~120nm with a wide range of size distribution. The intrinsic viscosity of enzymatic degummed fibroin solution was lower than that of soap degummed solution. This can be explained that the silk fibroin was more degraded by enzymatic degumming method compared with the soap degumming method. SDS-polyacrylamide gel electrophoresis showed that the fibroin molecule was composed of large component of molecule weight above 50 kd and small component of molecule weight about 20 kd. There was no difference in crystallinity between two degumming methods on the bases of results of DSC thermograms and IR spectra.

  • PDF