• Title/Summary/Keyword: fibroblast growth factor 23

Search Result 20, Processing Time 0.027 seconds

Effect of Fibroblast Growth Factor 23 on Osteoblastic Differentiation and Mineralization of D1 Mesenchymal Stem Cells (섬유모세포성장인자-23이 D1 간엽줄기세포에서 조골세포로의 분화 및 기질 광화에 미치는 영향)

  • Park, Kyeong-Lok
    • Journal of Life Science
    • /
    • v.26 no.3
    • /
    • pp.331-337
    • /
    • 2016
  • Although fibroblast growth factor 23 (FGF23) is exclusively produced in osteoblasts and osteocytes, its main target is the kidney, where it decreases phosphate reabsorption by suppressing Na-phosphate cotransporters. Independently of its action on phosphate homeostasis, FGF23 also inhibits bone formation in vivo. In a calvarial osteoblastic cell model, FGF23 was shown to negatively affect extracellular matrix mineralization. This study investigated whether FGF23 had similar effects on osteoblast maturation, including differentiation and mineralization of bone marrow-derived mesenchymal stem cells (MSCs). D1 MSCs were cultured in an osteogenic medium containing β-glycerophosphate, ascorbic acid, and dexamethazone. Osteoblastic differentiation was evaluated by alkaline phosphatase (Alp) staining, and matrix mineralization was evaluated by alizarin red staining and calcium deposition. The expression of differentiation-stimulating genes Runx2, Alp, and osteocalcin and mineralization-inhibiting genes Enpp1 and Ank was analyzed using semiquantitative RT-PCR. Supraphysiological doses of FGF23 did not stimulate proliferation or osteoblastic differentiation of MSCs. Matrix mineralization 1, 2, and 3 weeks after the FGF23 treatment did not vary between control and FGF23 groups, although time-dependent enhancement of mineralization was obvious. Calcium deposition was also unchanged after the FGF23 treatment. mRNA expression levels of differentiation- and mineralization-related genes were also similar between the groups. Despite these negative findings, FGF23 signaling through FGF receptors seemed to function normally, with phosphorylation of the Erk protein more evident in the FGF23 group than in controls. These findings suggest that unlike calvarial osteoblasts, FGF23 is not likely to affect osteoblastic differentiation and mineralization of MSCs.

Trend of Basic Research for Vocal Fold Scar (성대 반흔에 대한 기초연구의 최신 경향)

  • Lee, Byung-Joo
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.23 no.1
    • /
    • pp.28-32
    • /
    • 2012
  • Vocal fold scar disrupts structure of lamina propria and causes significant change in vocal fold tissue biomechanics, resulting in a range of voice problems that often significantly compromise patient quality of life. Although several therapeutic management have been offered in an attempt to improve vocal fold scar, the ideal treatment has not yet been found. Recently, several tissue engineering technique for vocal fold scar using growth factors, several cells, and scaffolds have been described in tissue culture and animal models. Several growth factors such as hepatocyte growth factor, basic fibroblast growth factor, and transforming growth factor beta 3 for therapy and prevention of vocal fold scar have been studied. Cell types to regenerate vocal folds in scarring tissue have been introduced autologous or scarred vocal fold fibroblast and adult mesenchymal stem cells. Decellularized organ matrix and several hyaluronic acid materials have used as scaffolds for vocal fold scar.

  • PDF

High Dose of FGF-2 Induced Growth Retardation via ERK1/2 De-phosphorylation in Bone Marrow-derived Mesenchymal Stem Cells

  • Shim, Kwang Yong;Saima, Fatema Tuj;Eom, Young Woo
    • Biomedical Science Letters
    • /
    • v.23 no.2
    • /
    • pp.49-56
    • /
    • 2017
  • Fibroblast growth factor (FGF)-2 is one of the most effective growth factors to increase the growth rate of mesenchymal stem cells (MSCs). Previously, we reported that low dose of FGF-2 (1 ng/ml) induced proliferation of bone marrow-derived mesenchymal stem cells (BMSCs) through AKT and ERK activation resulting in reduction of autophagy and senescence, but not at a high dose. In this study, we investigated the effects of high dose FGF-2 (10 ng/ml) on proliferation, autophagy and senescence of BMSCs for long term cultures (i.e., 2 months). FGF-2 increased the growth rate of BMSCs in a dose dependent manner for a short term (3 days), while during long term cultures (2 months), population doubling time was increased and accumulated cell number was lower than control in BMSCs when cultured with 10 ng/ml of FGF-2. 10 ng/ml of FGF-2 induced immediate de-phosphorylation of ERK1/2, expression of LC3-II, and increase of senescence associated ${\beta}$-galactosidase (SA-${\beta}$-Gal, senescence marker) expression. In conclusion, we showed that 10 ng/ml of FGF-2 was inadequate for ex vivo expansion of BMSCs because 10 ng/ml of FGF-2 induced growth retardation via ERK1/2 de-phosphorylation and induction of autophagy and senescence in BMSCs.

Basic Fibroblast Growth Factor Increases Intracellular Magnesium Concentration through the Specific Signaling Pathways

  • Hong, Bing-Zhe;Park, Sun-Ah;Kim, Han-Na;Ma, Tian-Ze;Kim, Han-Gyu;Kang, Hyung-Sub;Kim, Hwan-Gyu;Kwak, Yong-Geun
    • Molecules and Cells
    • /
    • v.28 no.1
    • /
    • pp.13-17
    • /
    • 2009
  • Basic fibroblast growth factor (bFGF) plays an important role in angiogenesis. However, the underlying mechanisms are not clear. $Mg^{2+}$ is the most abundant intracellular divalent cation in the body and plays critical roles in many cell functions. We investigated the effect of bFGF on the intracellular $Mg^{2+}$ concentration ($[Mg^{2+}]_i$) in human umbilical vein endothelial cells (HUVECs). bFGF increased ($[Mg^{2+}]_i$) in a dose-dependent manner, independent of extracellular $Mg^{2+}$. This bFGF-induced $[Mg^{2+}]_i$ increase was blocked by tyrosine kinase inhibitors (tyrphostin A-23 and genistein), phosphatidylinositol 3-kinase (PI3K) inhibitors (wortmannin and LY294002) and a phospholipase $C{\gamma}$ ($PLC{\gamma}$) inhibitor (U73122). In contrast, mitogen-activated protein kinase inhibitors (SB202190 and PD98059) did not affect the bFGF-induced $[Mg^{2+}]_i$ increase. These results suggest that bFGF increases the $[Mg^{2+}]_i$ from the intracellular $Mg^{2+}$ stores through the tyrosine kinase/PI3K/$PLC{\gamma}$-dependent signaling pathways.

Analysis of the effect of trichloroacetic acid and epidermal growth factor release on cytoskeleton gene expression using the nano-controlled releasing system (나노방출제어시스템을 이용한 trichloroacetic acid와 epidermal growth factor 방출이 세포골격형성 유전자 발현에 미치는 영향 분석)

  • Park, Mi Jeong;Leesungbok, Richard;Lee, Suk Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.58 no.4
    • /
    • pp.290-299
    • /
    • 2020
  • Purpose: Here, we verified that the actin cytoskeletal gene expression of human gingival fibroblasts was altered by the administration of trichloroacetic acid (TCA) and epidermal growth factor (EGF) using the nano-controlled releasing system. Materials and methods: The control and experimental groups were divided into 3 groups: the group with the TCA-only nano-controlled releasing system (EXP1), the group with the TCA- and EGF nano-controlled releasing system (EXP2), and the control group (CON) with 48-h incubation. Expression of 26 genes involved in the regulation of actin cytoskeleton were analyzed by real-time PCR followed by the determination of correlations and influential factors using the Pearson correlation analysis and multiple regression analysis. Results: Among 23 genes upregulated in EXP1 and EXP2, expression of 14 genes were significantly increased in EXP2 compared to EXP1. On the other hand, LPAR1 was downregulated only in EXP1, GNA13 was upregulated only in EXP2, and F2R was downregulated only in EXP2. Three Rac1-related genes and CDC42 were identified as the influential factors of the actin gene upregulation. Conclusion: The actin cytoskeleton genes in human gingival fibroblast were upregulated by the administration of TCA and EGF using HGC-based nano-controlled releasing system.

Protective effect of Buddha's Temple extract against tert-butyl hydroperoxide stimulation-induced oxidative stress in DF-1 cells

  • Eun Hye Park;Sung-Jo Kim
    • Animal Bioscience
    • /
    • v.36 no.7
    • /
    • pp.1120-1129
    • /
    • 2023
  • Objective: This study aimed to determine the protective efficacy of Buddha's Temple (BT) extract against tert-butyl hydroperoxide (t-BHP)-induced oxidative stress in Gallus gallus chicken embryo fibroblast cell line (DF-1) and its effects on the cell lipid metabolism. Methods: In this experimental study, Gallus gallus DF-1 fibroblast cells were pretreated with BT 10-7 for 24 hours, followed by their six-hour exposure to t-BHP (100 μM). Water-soluble tetrazolium salt-8 (WST-8) assays were performed, and the growth curve was computed. The intracellular gene expression changes caused by BT extract were confirmed through quantitative polymerase chain reaction (qPCR). Flow cytometry, oil red O staining experiment, and thin-layer chromatography were performed for the detection of intracellular metabolic mechanism changes. Results: The WST-8 assay results showed that the BT pretreatment of Gallus gallus DF-1 fibroblast cell increased their cell survival rate by 1.08%±0.04%, decreased the reactive oxygen species (ROS) level by 0.93%±0.12% even after exposure to oxidants, and stabilized mitochondrial activity by 1.37%±0.36%. In addition, qPCR results confirmed that the gene expression levels of tumor necrosis factor α (TNFα), TIR domain-containing adapter inducing IFN-beta (TICAM1), and glucose-regulated protein 78 (GRP78) were regulated, which contributed to cell stabilization. Thin-layer chromatography and oil red O analyses showed a clear decrease in the contents of lipid metabolites such as triacylglycerol and free fatty acids. Conclusion: In this study, we confirmed that the examined BT extract exerted selective protective effects on Gallus gallus DF-1 fibroblast cells against cell damage caused by t-BHP, which is a strong oxidative inducer. Furthermore, we established that this extract significantly reduced the intracellular ROS accumulation due to oxidative stress, which contributes to an increase in poultry production and higher incomes.

Studies of Purification and Characterization of Epidermal Growth Factor from Human Colostrum (인유 중의 Epidermal Growth Factor 분리 및 특성에 관한 연구)

  • 신영하;양희진;양동훈;이수원
    • Food Science of Animal Resources
    • /
    • v.23 no.2
    • /
    • pp.155-160
    • /
    • 2003
  • The purpose of this study was to purify epidermal growth factor(EGF) as growth factor from human colostrum. The effects of purified EGF fraction were directly related to the growth of cells. Results were as follows; After eliminated fat from colostrum, skim milk was obtained. We obtained the EGF fraction by performing ultrafiltration and gel filtration, and then were convicted by SDS-PAGE. The result of analysis of purified EGF fraction by high performance liquid chromatography(HPLC) was shown a peak at 31.185 min period. And it was similar with standard EGF that was shown a peak at 31.545 min. 10 ng of EGF was contained in 10 mg/mL through immunoassay to measure EGF content from isolated fraction. After SDS-PAGE, isolation degree of purified fraction was convicted through western blotting. BALB/3T3 cell was the most effectively stimulated and proliferated at 1 mg/mL concentration of the purified EGF fraction and percentage of cell proliferation was about 95%. In the case of IEC-6 cell, that was about 71%.

The Metabolic Effects of FGF21: From Physiology to Pharmacology (생리, 약학적 관점에서 fibroblast growth factor 21 (FGF21)의 대사 효과 고찰)

  • Song, Parkyong
    • Journal of Life Science
    • /
    • v.30 no.7
    • /
    • pp.640-650
    • /
    • 2020
  • Fibroblast growth factor 21 (FGF21) is an atypical member of the FGF protein family which is highly synthesized in the liver, pancreas, and adipose tissue. Depending on the expression tissue, FGF21 uses endo- or paracrine features to regulate several metabolic pathways including glucose metabolism and energy homeostasis. Different physiologically stressful conditions such as starvation, a ketogenic diet, extreme cold, and mitochondrial dysfunction are known to induce FGF21 synthesis in various tissues to exert either adaptive or defensive mechanisms. More specifically, peroxisome proliferator-activated receptor gamma and peroxisome proliferator-activated receptor alpha control FGF21 expression in adipose tissue and liver, respectively. In addition, the pharmacologic administration of FGF21 has been reported to decrease the body weight and improve the insulin sensitivity and lipoprotein profiles of obese mice and type 2 diabetes patients meaning that FGF21 has attracted huge interest as a therapeutic agent for type 2 diabetes, obesity, and non-alcoholic fatty liver disease. However, understanding FGF21 remains complicated due to the paradoxical condition of its tissue-dependent expression. For example, nutrient deprivation largely increases hepatic FGF21 levels whereas adipose tissue-derived FGF21 is increased under feeding condition. This review discusses the issues of interest that have arisen from existing publications, including the tissue-specific function of FGF21 and its action mechanism. We also summarize the current stage of a clinical trial using several FGF21 analogs.

The role of p21/CIP1/WAF1 (p21) in the negative regulation of the growth hormone/growth hormone receptor and epidermal growth factor/epidermal growth factor receptor pathways, in growth hormone transduction defect

  • Kostopoulou, Eirini;Gil, Andrea Paola Rojas;Spiliotis, Bessie E.
    • Annals of Pediatric Endocrinology and Metabolism
    • /
    • v.23 no.4
    • /
    • pp.204-209
    • /
    • 2018
  • Purpose: Growth hormone transduction defect (GHTD) is characterized by severe short stature, impaired STAT3 (signal transducer and activator of transcription-3) phosphorylation and overexpression of the cytokine inducible SH2 containing protein (CIS) and p21/CIP1/WAF1. To investigate the role of p21/CIP1/WAF1 in the negative regulation of the growth hormone (GH)/GH receptor and Epidermal Growth Factor (EGF)/EGF Receptor pathways in GHTD. Methods: Fibroblast cultures were developed from gingival biopsies of 1 GHTD patient and 1 control. The protein expression and the cellular localization of p21/CIP1/WAF1 was studied by Western immunoblotting and immunofluorescence, respectively: at the basal state and after induction with $200-{\mu}g/L$ human GH (hGH) (GH200), either with or without siRNA CIS (siCIS); at the basal state and after inductions with $200-{\mu}g/L$ hGH (GH200), $1,000-{\mu}g/L$ hGH (GH1000) or 50-ng/mL EGF. Results: After GH200/siCIS, the protein expression and nuclear localization of p21 were reduced in the patient. After successful induction of GH signaling (control, GH200; patient, GH1000), the protein expression and nuclear localization of p21 were reduced. After induction with EGF, p21 translocated to the cytoplasm in the control, whereas in the GHTD patient it remained located in the nucleus. Conclusion: In the GHTD fibroblasts, when CIS is reduced, either after siCIS or after a higher dose of hGH (GH1000), p21's antiproliferative effect (nuclear localization) is also reduced and GH signaling is activated. There also appears to be a positive relationship between the 2 inhibitors of GH signaling, CIS and p21. Finally, in GHTD, p21 seems to participate in the regulation of both the GH and EGF/EGFR pathways, depending upon its cellular location.

Factors Associated with Weight Gain and Its Prevention Strategies (체중 증가의 관련 요인과 예방책)

  • Seung Hee Kim
    • Archives of Obesity and Metabolism
    • /
    • v.2 no.2
    • /
    • pp.37-44
    • /
    • 2023
  • Weight gain is defined as the increase in body weight, increasing the prevalence of obesity, and results in metabolic diseases. Weight gain was reportedly caused by the interaction between the obesogenic environmental factors and individual metabolic factors. Sociodemographic and environmental factors (demographic factors, lifestyle/behavioral factors, food/nutritional factors, socioeconomic factors), drug-related secondary causes (some of the corticosteroids, antihyperglycemics, antihypertensives, antidepressants, etc.), and metabolic factors (aging and hormonal changes, menopause and decreased sex hormones, decreased adipocyte degradation, decreased fibroblast growth factor 21, central sympathetic nervous system hyperactivity, decreased sympathetic-adrenomedullary system activity) are significant factors related to weight gain. It is crucial to prevent weight gain and maintain an ideal weight, but studies on the risk factors of weight gain are insufficient. Therefore, this study evaluated the factors associated with weight gain to find strategies for preventing unnecessary weight gain.