• Title/Summary/Keyword: fibroblast cells

Search Result 1,085, Processing Time 0.033 seconds

Skin Regeneration, Anti-wrinkle, Whitening and Moisturizing Effects of Cheongsangbangpung-tang Aqueous Extracts with Cytotoxicity (청상방풍탕 열수 추출물의 피부재생, 주름개선, 미백, 보습 효과 및 세포독성 평가)

  • Woo, Chang-Yoon;Kim, Dong-Chul
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.30 no.2
    • /
    • pp.49-70
    • /
    • 2017
  • Objectives: The present study is to observe the skin-regeneration, anti-wrinkle, whitening and skin moisturizing effects of Cheongsangbangpung-tang (CSBPT) with cytotoxicity. Methods: In the present study, cytotoxicity of CSBPT lyophilized aqueous extracts (yield=18.71%) was experimented against human normal fibroblast cells and B16F10 murine melanoma cells by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium Bromide (MTT) assay, and skin regeneration and anti-wrinkle effects were also showed through the assay of collagen type I synthesis by an enzyme immunoassay (EIA) kit as comparing with transforming growth factor (TGF)-${\beta}1$, hyaluronidase, collagenase and matrix metalloproteinase (MMP)-1 inhibitory assays as comparing with oleanolic acid (OA), and elastase inhibitory effects as comparing with phosphoramidon disodium salt (PP). In addition, whitening effects of CSBPT were observed by tyrosinase inhibitory assay and melanin formation test in B16/F10 melanoma cells as comparing with arbutin, and skin moisturizing effects were measured through mouse skin water contents test, respectively. Results: No CSBPT treatment related cytotoxic effects were demonstrated against human normal fibroblast cells and B16/F10 murine melanoma cells. CSBPT concentration-dependent increased collagen type I synthesis at human normal fibroblast cells. It also effectively suspreessed hyaluronidase, collagenase, elastase and MMP-1 activities, which were enzymes that related to declining of ECM and formation of wrinkle. CSBPT supressed B16/F10 melanoma cells's melanin productions with tyrosinase activity, which was an enzyme connected with melanin formation, and dose-dependent and significant increases of skin water contents were detected in CSBPT treated mouse skin as compared with vehicle control skins. Conclusions: CSBPT showed favorable and enough skin regeneration, anti-wrinkle, whitening and skin moisturizing effects at least in a condition of this experiment. However, more detail mechanism and in vivo skin protective efficacy studies should be conducted in future with the screening of the biological active compounds in individual herbs of Cheongsangbangpung-tang.

Effects of chitosan on the characteristics of periodontal ligament, calvaria cells and gingival fibroblasts (Chitosan이 치주인대, 두개관 및 치은섬유아세포의 성상에 미치는 영향)

  • Kim, Sun-Hee;Kwon, Young-Hyuk;Lee, Man-Sup;Park, Joon-Bong;Herr, Yeek
    • Journal of Periodontal and Implant Science
    • /
    • v.28 no.1
    • /
    • pp.17-35
    • /
    • 1998
  • Chitosan, with a chemical structure similar to hyaluronic acid, has been implicated as a wound healing agent. The purpose of this research was to evaluate the effects of chitosan on the characteristics of periodontal ligament cells, calvaria cells and gingival fibroblasts and to define the effects of chitosan on bone formation in vitro. In control group, the cells were cultured alone with Dulbecco's Modified Eagle's Medium contained with 10% Fetal bovine serum, 100unit/ml penicillin, $100{\mu}g/ml$ streptomycin, $0.5{\mu}g/ml$ amphotericin-B. In experimental group, chitosan($40{\mu}g/ml$) is added into the above culture condition. And then each group was characterized by examining the cell proliferation at 1,3,5,7,9,12,15 day, the amount of total protein synthesis, alkaline phosphatase activity at 3, 7 day and the ability to produce mineralized nodules of rat calvaria cell at 11 day. The results were as follows : 1. At early time both periodontal ligament cells and calvaria cells in chitosan-treated group proliferated more rapidly than in non-treated control group, but chitosan-treated group of periodontal ligament cells at 9 days and calvaria cells at 12days showed lower growth rate than control group. Gingival fibroblast in chitosan-treated group had lower growth rate than in control group but the difference was not statistically significant (P< 0.01).2. Both periodontal ligament cells and calvaria cells in chitosan-treated group showed much protein synthesis than in control group at 3 days, but showed fewer than in control group at 7 days. Amount of total protein synthesis of gingival fibroblast didn't have statistically significant difference among the two groups(P< 0.01). 3. At 3 and 7 days, alkaline phosphatase activity of periodontal ligament cells and calvaria cells was increased in chitosan-treated group, but at 7 days there was not statistically significant difference among the two groups of calvaria cells (P< 0.01). Alkaline phosphatase activity of gingival fibroblast didn't have statistically significant difference among the two groups(P<0.01). 4. Mineralized nodules in chitosan-treated group of rat calvaria cells were more than in control group. In summery, chitosan had an effect on the proliferation, protein systhesis, alkaline phosphatase activity of periodontal ligament cells and calvaria cells, and facilitated the formation of bone. It is thought that these effects can be used clinically in periodontal regeneration therapy.

  • PDF

Human Fibroblast-derived Multi-peptide Factors and the Use of Energy-delivering Devices in Asian Patients

  • Suh, Sang Bum;Ahn, Keun Jae;Chung, Hye Jin;Suh, Ji Youn;Cho, Sung Bin
    • Medical Lasers
    • /
    • v.9 no.1
    • /
    • pp.12-24
    • /
    • 2020
  • Human fibroblast-derived multi-peptide factors (MPFs) have been used during treatments with energy-delivering modalities to enhance energy-induced tissue reactions. Human fibroblast-derived MPFs, which include a range of growth factors and chemoattractive factors, activate and recruit fibroblasts and endothelial cells, as well as promote extracellular matrix deposition, all of which are crucial to wound repair. Interestingly, fibroblasts from different species or anatomical sites exhibit distinct transcriptional properties with high heterogeneity. In addition, the patterns of MPF secretion can differ under a range of experimental conditions. Therefore, the use of allogeneic fibroblasts and proper cultivation thereof are necessary to obtain MPFs that can enhance the epithelial-mesenchymal interactions during wound repair. Moreover, energy-delivering devices should be selected according to evidence demonstrating their therapeutic efficacy and safety on a pathological skin condition and the major target skin layers. This paper reviewed the histologic patterns of post-treatment tissue reactions elicited by several energy sources, including non-ablative and ablative fractional lasers, intense focused ultrasound, non-invasive and invasive radiofrequency, picosecond-domain lasers, and argon and nitrogen plasma. The possible role of the immediate application of human fibroblast-derived MPFs during wound repair was proposed.

STUDIES ON THE EFFECTS OF BLEACHING AGENT LEAKED THROUGH THE DENTINAL TUBULES OF CERVICAL AREA ON CULTURED FIBROBLAST CELLS (치경부의 상아세관을 통하여 추출된 표백제가 배양 섬유모세포에 미치는 영향에 관한 연구)

  • Chu, Kwang-Moon;Choi, Gi-Woon;Han, Du-Seok
    • Restorative Dentistry and Endodontics
    • /
    • v.16 no.2
    • /
    • pp.155-164
    • /
    • 1991
  • The purpose of this study was to evaluate the effects of bleaching agent through the dentinal tubules of cervical area in the intracoronal bleaching of pulpless teeth on cutured fibroblast cells. Extracted human incisors were enlarged to # 40 K-file and obturated with gutta-perella and AH 26 sealer. The gutta-percha was removed to 2mm below the cementoenamel junction of the root The teeth were divided into 3 experimental and control groups. Experimental groups; Experimental group 1: Temporary inlay wax filld with 30% $H_2O_2$ in pulp cavity. Experimental group 2: Temporary inlay wax filld with 30% $H_2O_2$ in pulp cavity after placement of ZOE cement to cementoenamel junction. Experimental group 3: Temporary inlay wax filld with 30% $H_2O_2$ in pulp cavity after application of Copalite to cementoenamel junction. Control group: Temporary inlay wax filled without 30% $H_2O_2$ in pulp cavity under the same condition at each experimental group. Each tooth was immersed in well of multidish cultured fibroblast cell for 48 hours. The cellular multiplication and cell viability were calculated at the interval of 1, 3, 5. 7 hours and the morphological changes in well were observed and their photographs were taken with inverted microscope. The obtained results were as follows : CD The cellurar multiplicaton and cell viability decreased in all experimental groups at 1 hour after experiment and the morphology of fibroblast cell was changed from star shape to round (2) The cell viability was lowered to 34 % in experemental group 1, 44 % in experimental group 2, and 38 % in experemental group 3 at 3 hours after experiment (3) The cell multiplication was decreased to 54% in experemental group 1. 47% in experimental group 2, and 40% in experemental group 3 at 7 hours after experiment. (4) The decrease of cell number and morphological changes of fibroblast cell were remarkable in experimental group 1, group 3 and 2 in order. These results suggest that the fibroblast cells receive severe damage by 30% $H_2O_2$ solution leaked through the dentinal tubules and the dentinal tubules are able to be obturated better by ZOE cement than by Copalite.

  • PDF

Comparison of Sensitivity Between Balb/c 3T3 Cell and HaCaT Cell by NRU Assay to Predict Skin Phototoxicity Potential

  • Lee, Jong-Kwon;Lee, Eun-Hee;Lee, Sun-Hee
    • Toxicological Research
    • /
    • v.18 no.3
    • /
    • pp.227-232
    • /
    • 2002
  • In order to find out the appropriate in vitro method for high correlation with in vivo, we com-pared the sensitivities of phototoxicity (PT) in vitro method between in human keratinocytes, HaCaT cells and in 3T3 fibroblast cells derived from Balb/c mice. Both cells were exposed to six known phototoxic chemicals : promethazine, neutral red, chlortetracycline, amiodarone, bithionol, 8-methoxypsoralen, or non-phototoxic chemical, ALS (ammonium laureth sulfate) and then irradiated with 5 J/$cm^2$ of UVA. Cell viability ($IC_{50}$ ) was measured by neutral red uptake (NRU) assay. The ratio of $IC_{50}$ value of chemicals in the presence and absence of UVA was determined by the cut-off value. The phototoxic potential of test chemicals in NRU assay was determined by measuring the photoirriation factor (PIF) with a cut-off value of 5. In both 3T3 and HaCaT cells, all known phototoxic chemicals were positive (over 5 of PIF value), except that bithionol was found to be non-phototoxic to HaCaT cells, and ALS, non-phototoxic chemical was negative. These results suggest that Balb/c 3T3 cell was more sensitive than HaCaT cell to predict phototoxicity potential.

A STUDY ON THE CYTOTOXICITY OF ROOT CANNAL SEALERS TO SEVERAL CELL LINES (근관 충전용 Sealer가 수종의 세포에 미치는 독성효과에 관한 연구)

  • Im, Mi-Kyung;Lee, Chung-Sik
    • Restorative Dentistry and Endodontics
    • /
    • v.17 no.2
    • /
    • pp.263-286
    • /
    • 1992
  • This study was performed to evaluate and compare the cytotoxic effects of five root canal sealers to several different cell lines. Five root canal sealers were AH-26, N2, Sealapex, Tubliseal, and Vitapex. Each sealers were mixed according to the manufacturer's instructions, and culture media were added to each sealers immediately after mixing (the immediate group) and after three days (the third day group) and seven days (the seventh day group) respectively. And every sealer solutions were diluted to 1:1, 1:2, 1:3 and 1:4. Three different permanent cell lines (HEp-2, McCoy, MRC-S) and human gingival fibroblasts and mononuclear cells were challenged by each sealer solution and the cytopathic effects were evaluated using MTT-ELISA, MTT-microscopy, and lactate dehydrogenase (LD) activity. The results were as follows: 1. In HEp-2 and MRC-5 cells, Vitapex was the least cytotoxic sealers. 2. AH-26 showed mild cytotoxic effects to HEp-2, gingival fibroblast and mononuclear cells. 3. N2 was the most toxic sealer to gingival fibroblast and it showed relatively strong cytotoxicity to HEp-2, McCoy and MRC-S cells. 4. Tubliseal showed strong cytotoxic effects to HEp-2, McCoy, MRC-S, and mononuclear cells. 5. Sealapex showed strong cytotoxic effect to HEp-2, McCoy, and gingival fibroblasts.

  • PDF

Effect of Quiescent Treatment on Nuclear Remodeling and In Vitro Development of Nuclear Transfer Embryos Derived from Bovine Fetal Fibroblast Cells (세포의 휴면처리가 소 태아섬유아세포 유래 핵이식란의 핵상변화와 체외발육에 미치는 영향)

  • 최종엽;권대진;김정익;박춘근;양부근;정희태
    • Korean Journal of Animal Reproduction
    • /
    • v.24 no.2
    • /
    • pp.217-222
    • /
    • 2000
  • This study was conducted to investigate the effect of quiescent treatment of the donor cells on the nuclear remodeling and in vitro development of fetal fibroblast cell-cloned bovine embryos. Serum starved, confluent and nonquiescent cycling fetal fibroblast cells were transferred into the enucleated oocytes. About 20∼25% of nuclear transfer embryos fused with a serum starved or confluent cell extruded a polar body, which was slightly lower than that of nontreated control (36%). About 49∼51% of nuclear transfer embryos fused with a serum starved or confluent cell had a single chromatin clump, which was slightly higher than that of nontreated control (40%). The proportion of embryos with a single chromatin clump was significantly higher (P<0.01) in nuclear transfer embryos without showing a polar body (60.5%) than with a polar body (4.7%). Development rates to the blastocyst stage were 21.7% and 20.9% when serum starved and confluent cells were transferred, which were slightly higher than that of control (14.1 %). The result of this study suggests that quiescent treatment by serum starvation or growth to confluency of donor cells could increase the number of embryos with a normal chromatin structure, which results in increased in vitro development.

  • PDF

Maintenance of Proliferation and Adipogenic Differentiation by Fibroblast Growth Factor-2 and Dexamethasone Through Expression of Hepatocyte Growth Factor in Bone Marrow-derived Mesenchymal Stem Cells

  • Oh, Ji-Eun;Eom, Young Woo
    • Biomedical Science Letters
    • /
    • v.22 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • Several studies have investigated the various effects of dexamethasone (Dex) on the proliferation and differentiation of mesenchymal stem cells (MSCs). Previously, we reported that co-treatment with L-ascorbic acid 2-phosphate and fibroblast growth factor (FGF)-2 maintained differentiation potential in MSCs through expression of hepatocyte growth factor (HGF). In this study, we investigated the effects of co-treatment with FGF-2 and Dex on the proliferation and differentiation potential of MSCs during a 2-month culture period. Co-treatment with FGF-2 and Dex increased approximately a 4.7-fold higher accumulation rate of MSC numbers than that by FGF-2 single treatment during a 2-month culture period. Interestingly, co-treatment with FGF-2 and Dex increased expression of HGF and maintained adipogenic differentiation potential during this culture period. These results suggest that co-treatment with FGF-2 and Dex preserves the proliferation and differentiation potential during long-term culture.

Lipofectamine-2000 Assisted Magnetofection to Fibroblast Cells Using Polyethyleneimine-Fe3O4@SiO2 Nanoparticles

  • Jang, Eue-Soon;Park, Kyeong-Soon
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2567-2573
    • /
    • 2012
  • We successfully synthesized $Fe_3O_4@SiO_2$ nanoparticles with ultrathin silica layer of $1.0{\pm}0.5$ nm that polyethyleneimine (PEI) with low molecular weight of 2.0-4.0 kDa was covalently conjugated with the resulting $Fe_3O_4@SiO_2$ nanoparticles by silane coupling reaction. The PEI-$Fe_3O_4@SiO_2$ nanoparticles were further used as gene delivery vector for a human fibroblast cell (IMR-90) line. Gene transfection efficiency of the PEI-$Fe_3O_4@SiO_2$ complexes did not increase remarkably after magnetofection; however, the addition of Lipofectamine 2000 significantly increased the transfection efficiency of the PEI-$Fe_3O_4@SiO_2$ complexes. We believe that the present approach could be utilized for magnetofection as alternative to $Fe_3O_4$ nanoparticles conjugated with the PEI of high molecular weight thanks to its relatively low cytotoxicity and high transfection efficiency.