• Title/Summary/Keyword: fibroblast cells

Search Result 1,087, Processing Time 0.029 seconds

Protective effect of Buddha's Temple extract against tert-butyl hydroperoxide stimulation-induced oxidative stress in DF-1 cells

  • Eun Hye Park;Sung-Jo Kim
    • Animal Bioscience
    • /
    • v.36 no.7
    • /
    • pp.1120-1129
    • /
    • 2023
  • Objective: This study aimed to determine the protective efficacy of Buddha's Temple (BT) extract against tert-butyl hydroperoxide (t-BHP)-induced oxidative stress in Gallus gallus chicken embryo fibroblast cell line (DF-1) and its effects on the cell lipid metabolism. Methods: In this experimental study, Gallus gallus DF-1 fibroblast cells were pretreated with BT 10-7 for 24 hours, followed by their six-hour exposure to t-BHP (100 μM). Water-soluble tetrazolium salt-8 (WST-8) assays were performed, and the growth curve was computed. The intracellular gene expression changes caused by BT extract were confirmed through quantitative polymerase chain reaction (qPCR). Flow cytometry, oil red O staining experiment, and thin-layer chromatography were performed for the detection of intracellular metabolic mechanism changes. Results: The WST-8 assay results showed that the BT pretreatment of Gallus gallus DF-1 fibroblast cell increased their cell survival rate by 1.08%±0.04%, decreased the reactive oxygen species (ROS) level by 0.93%±0.12% even after exposure to oxidants, and stabilized mitochondrial activity by 1.37%±0.36%. In addition, qPCR results confirmed that the gene expression levels of tumor necrosis factor α (TNFα), TIR domain-containing adapter inducing IFN-beta (TICAM1), and glucose-regulated protein 78 (GRP78) were regulated, which contributed to cell stabilization. Thin-layer chromatography and oil red O analyses showed a clear decrease in the contents of lipid metabolites such as triacylglycerol and free fatty acids. Conclusion: In this study, we confirmed that the examined BT extract exerted selective protective effects on Gallus gallus DF-1 fibroblast cells against cell damage caused by t-BHP, which is a strong oxidative inducer. Furthermore, we established that this extract significantly reduced the intracellular ROS accumulation due to oxidative stress, which contributes to an increase in poultry production and higher incomes.

The Comparison of Commercial Serum-Free Media for Hanwoo Satellite Cell Proliferation and the Role of Fibroblast Growth Factor 2

  • In-sun Yu;Jungseok Choi;Mina K. Kim;Min Jung Kim
    • Food Science of Animal Resources
    • /
    • v.43 no.6
    • /
    • pp.1017-1030
    • /
    • 2023
  • Fetal bovine serum (FBS), which contains various nutrients, comprises 20% of the growth medium for cell-cultivated meat. However, ethical, cost, and scientific issues, necesitates identification of alternatives. In this study, we investigated commercially manufactured serum-free media capable of culturing Hanwoo satellite cells (HWSCs) to identify constituent proliferation enhancing factors. Six different serum-free media were selected, and the HWSC proliferation rates in these serum-free media were compared with that of control medium supplemented with 20% FBS. Among the six media, cell proliferation rates were higher only in StemFlexTM Medium (SF) and Mesenchymal Stem Cell Growth Medium DXF (MS) than in the control medium. SF and MS contain high fibroblast growth factor 2 (FGF2) concentrations, and we found upregulated FGF2 protein expression in cells cultured in SF or MS. Activation of the fibroblast growth factor receptor 1 (FGFR1)-mediated signaling pathway and stimulation of muscle satellite cell proliferation-related factors were confirmed by the presence of related biomarkers (FGFR1, FRS2, Raf1, ERK, p38, Pax7, and MyoD) as indicated by quantitative polymerase chain reaction, western blotting, and immunocytochemistry. Moreover, PD173074, an FGFR1 inhibitor suppressed cell proliferation in SF and MS and downregulated related biomarkers (FGFR1, FRS2, Raf1, and ERK). The promotion of cell proliferation in SF and MS was therefore attributed to FGF2, which indicates that FGFR1 activation in muscle satellite cells may be a target for improving the efficiency of cell-cultivated meat production.

Effects of Knockout Serum Replacement in the Culture Medium on the Proliferation of Porcine Fetal Fibroblasts In Vitro

  • Kim, Eun-Ju;Park, Jung-Joo;Choi, Young-Ju;Park, Sang Kyu;Roh, Sang-Ho
    • International Journal of Oral Biology
    • /
    • v.35 no.1
    • /
    • pp.1-5
    • /
    • 2010
  • Human fibroblasts that maintain the structural integrity of connective tissues by secreting precursors of the extracellular matrix are typically cultured with serum. However, there are potential disadvantages of the use of serum including unnatural interactions between the cells and the potential for exposure to animal pathogens. To prevent the possible influence of serum on fibroblast cultures, we devised a serum-free growth method and present in vitro data that demonstrate its suitability for growing porcine fetal fibroblasts. These cells were grown under four different culture conditions: no serum (negative control), 10% fetal bovine serum (FBS, positive control), 10% knockout serum replacement (KSR) and 20% KSR in the medium. The proliferation rates and viabilities of the cells were investigated by counting the number of cells and trypan blue staining, respectively. The 10% FBS group showed the largest increase in the total number of cells ($1.09\;{\times}\;10^5\;cells/ml$). In terms of the rate of viable cells, the results from the KSR supplementation groups (20% KSR:64.7%; 10% KSR: 80.6%) were similar to those from the 10% FBS group (68.5%). Moreover, supplementation with either 10% ($3.0\;{\times}\;10^4\;cells/ml$) or 20% KSR ($4.8\;{\times}\;10^4\;cells/ml$) produced similar cell growth rates. In conclusion, although KSR supplementation produces a lower cell proliferation rate than FBS, this growth condition is more effective for obtaining an appropriate number of viable porcine fetal fibroblasts in culture. Using KSR in fibroblast culture medium is thus a viable alternative to FBS.

A Basic Study on in-vitro Wound Healing Effect Using LED (LED를 활용한 in-vitro 피부 창상 치유 기초연구)

  • Jang, Won-jin;Kim, Do-Yun;Ryu, Yeon-ju;Park, Su-jin;Lee, Eonjin;Choe, Se-woon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.542-544
    • /
    • 2022
  • In this study, a basic study was conducted to confirm the wound recovering ability using LEDs. After cultured fibroblast on 6-wells we formed a wound. Here, LEDs of a specific wavelength are irradiated and check the wound healing through Matlab image processing. As a result, it was confirmed that fibroblast recovered faster when LED was irradiated.

  • PDF

Establishment and Identification of a Debao Pony Ear Marginal Tissue Fibroblast Cell Line

  • Zhou, X.M.;Ma, Y.H.;Guan, W.J.;Zhao, D.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.10
    • /
    • pp.1338-1343
    • /
    • 2004
  • The Debao pony ear marginal tissue fibroblast cell line (NDPEM 2/2) was uccessfully established using either primary explant technique or collagenase technique. The characterizations of the cell line were identified as following: the cells were adherent and of density limitation; population doubling time (PDT) of cells made with the two techniques were 35.9 h and 48 h, respectively; chromosome analysis showed that the frequency of cell chromosome number to be 2n=64 was 91.3%-92.8%. Confirmed by isoenzyme analysis, this cell line had no cross- contamination. Tests for microbial contamination from bacteria, fungi, virus or mycoplasma were negative. This newly established cell line meets all the standard quality controls of ATCC. It will provide a precious genetic resource for the conservation of the Debao pony breed, as well as effective experimental material for genetic studies on Debao ponies.

Pituitary Tumor-Transforming Gene (PTTG) Induces both Vascular Endothelial Growth Factor (VEGF) and Basic Fibroblast Growth Factor (bFGF)

  • Cho, Sa-Yeon
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.11
    • /
    • pp.1823-1825
    • /
    • 2005
  • Angiogenesis is tightly regulated by a variety of angiogenic activators and inhibitors. Disruption of the balanced angiogenesis leads to the progress of diseases such as cancer, rheumatoid arthritis, and diabetic blindness. Even though a number of proteins involved in angiogenesis have been identified so far, more protein factors remain to be identified due to complexity of the process. Here I report that pituitary tumor-transforming gene (PTTG) induces migration and tube formation of human umbilical vein endothelial cells (HUVECs). High levels of both vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) are detected in conditioned medium obtained from cells transfected with PTTG expression plasmid. Taken together, these results suggest that PTTG is an angiogenic factor that induces production of both VEGF and bFGF.

Antioxidative Activity of Extracts of Acanthopanax divaricatus var. albeofructus Leaves in Human Dermal Fibroblast Irradiated by UVA (자외선이 조사된 사람피부 섬유아세포에서 흰털오가피 잎추출물의 항산화작용)

  • Shin, Ai-Hyang;Lyu, Su-Yun;Noh, Bin-Na;Kim, Ja-In;Kim, Ok-Kyoung;Park, Won-Bong
    • YAKHAK HOEJI
    • /
    • v.51 no.4
    • /
    • pp.229-234
    • /
    • 2007
  • We investigated antioxidative activity of the water and ethanol extracts of leaves of Acanthopanax divaricatus var. albeofructus in human dermal fibroblast (HDFs) irradiated by UVA. The irradiation of UVA did not affect the cell viability of HDFs. The antioxidative activity of the extract was investigated by xylenol orange, TBARS (thiobarbituric acid reactive substances) and antioxidant enzyme assay. Both extracts showed H202 scavenging activity and inhibited lipid peroxidation in HDF cells irradiated by UVA. The extracts also recovered enzyme activity in the same cells.

Antioxidant Effect of Paeonia Japonica Extracts on Mouse Embryonic Fibroblast Cells (백작약 에탄올 추출물이 mouse embryonic fibroblast cells에 미치는 항산화 효과)

  • Yoon, Hee-Jung;Go, Eun-Bi;Choi, Min-Sun;Kim, Dong-Il;Sung, Jung-Suk
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.25 no.2
    • /
    • pp.78-88
    • /
    • 2012
  • Objectives: Paeonia japonica has been widely used for gynecopathy and analgesic effects in Korean Traditional Medicine. The aim of the present study is to determine the antioxidant effect of Paeonia japonica extracts(PJE) by using mouse embryonic fibroblast cells(MEF cells). Methods: We evaluated Radical Scavenging Activity of PJE by the DPPH assay. Protective effect of the PJE on the hydrogen peroxide($H_2O_2$) induced oxidative damage of MEF cells was analyzed by the MTT assay. The Morphological changes of MEF cells induced by P. japonica, $H_2O_2$ and P. japonica+$H_2O_2$ was evaluated by DAPI staining. And effect of PJE on the rate of apoptosis in MEF cells was measured using flow cytometry with Annexin V-FITC and PI double staining. Results: We observed that PJE contain significant DPPH radical scavenging activity. Cell viability of oxidative damaged cells treated with various concentrations of $H_2O_2$ was increased by treatment with PJE. Flow cytometric analysis of the cells treated with $H_2O_2$ in the absence or presence of PJE showed that the crumbled G1 peak was accumulated by the treatment with $H_2O_2$ alone, but restored by addition of PJE. Portion of cells that undergo apoptosis mediated by oxidative stress was decreased by treatment of PJE. The nuclear fragmentation occurred in the oxidative damaged MEF cells was also decreased by PJE treatment. Conclusions: Taken together, our results suggest that PJE exhibits significant antioxidant activity and functions to inhibit cell death mediated by oxidative damage induced apoptotic pathways.

Selective Cytotoxicities of Phenolic Acids in Cancer Cells (페놀산의 구조가 암세포에 대한 세포독성에 미치는 영향)

  • 한두석;오상걸;오은상
    • Toxicological Research
    • /
    • v.19 no.1
    • /
    • pp.45-50
    • /
    • 2003
  • The purpose of this study was to determine the role of substituted groups in phenolic compounds to develop an anticancer agent having strong cytotoxicity against cancer cells but weak against normal cells. The phenolic compounds used in this study were gallic acid and ferulic acid with hydroxyl and carboxyl groups, syringic acid with hydroxyl, carboxyl and methoxy groups, and pyre-gallol with hydroxyl groups. Cytotoxicities of these compounds were evaluated by MTT assay for cell viability and XTT assay for cell adhesion activity in normal human skin fibroblast (Detroit 551) and human skin melanoma (SK-MEL-3) cells. Syringic acid, gallic acid and ferulic acid decreased the cell viability and cell adhesion activity in SK-MEL-3 cells but not in Detroit 551 cells while pyrogallol decreased in both cells. The susceptibility of cell viability based on the $IC_{50}$ values of MTT assay in Detroit 551 cells was in the following order: pyrogallol > gallic acid > ferulic acid > syringic acid, while it was in SK-MEL-3 cells: Syringic acid > progallol > ferulic acid > gallic acid. These results suggest that carboxyl and methoxy groups of these compounds play an important role in selectivity of cytotoxicity in normal and cancer cells.