• Title/Summary/Keyword: fibroblast cells

Search Result 1,085, Processing Time 0.027 seconds

Effect of Edible Flower Extracts on Antioxidative and Biological Activities (식용꽃 추출물이 항산화 및 세포의 생리활성에 미치는 영향 - 유채꽃, 칡꽃, 장미꽃을 중심으로 -)

  • 전혜경;최남순;박선영;유병선
    • The Korean Journal of Community Living Science
    • /
    • v.15 no.1
    • /
    • pp.67-76
    • /
    • 2004
  • In order to promote the value of the flowers as new agricultural products, we investigated the biological activities of rape, arrowroot, and rose extracts. Biological activities investigated included antioxidant activity and the effects on 3T3-L1 fibroblast cells. When each flower was extracted with methanol, the antioxidant index and electron donating activity of roses was the highest $(IC_{50}$ of rose extract was $17.6 \mu{g}/m\ell$). When 3T3-L1 fibroblast cells were treated with extracts made with hexane, ethyl acetate, and ether, the rape extracts had a cytotoxic effect on the cells. 12.2% of cells survived when treated with a 3mg/$m\ell$ ether extract while those treated with the same concentration of hexane and ethyl acetate had survival rates of 76.2% and 78.6% respectively. In contrast to rape, the ether extract of arrowroot and rose stimulated the growth of 3T3-L1 cells. The effect of rose extracts was much bigger than those of other extracts. Although every rose extract stimulated the growth of the 3T3-L 1 cells, the ether extract stimulated growth up to 168.6% compared to the control at the concentration of $0.3mg/m\ell$, and 148.3% at the concentration of $1mg/m\ell$. The toxicity on cells treated with $H_2 O_2$ of $450\mu{M}l$was decreased with the addition of rose extract. The survival rate after treatment with rose extract at the concentration of $100\mu{g}/m\ell$ was increased to 71% compared to the 32% survival rate of control. From these results, it can be concluded that the extracts of arrowroot and rose seem to stimulate cells, whereas the extract of rape has a cytotoxic effect. Biological activities of ether extract were the strongest compared to those of other extracts at the tested concentrations.

  • PDF

Characterization of HtrA2-deficient Mouse Embryonic Fibroblast Cells Based on Morphology and Analysis of their Sensitivity in Response to Cell Death Stimuli. (HtrA2 유전자가 결손된 mouse embryonic fibroblast 세포주의 형태학적 특징 및 세포사멸 자극에 대한 감수성 조사)

  • Lee, Sang-Kyu;Nam, Min-Kyung;Kim, Goo-Young;Rhim, Hyang-Shuk
    • Journal of Life Science
    • /
    • v.18 no.4
    • /
    • pp.522-529
    • /
    • 2008
  • High-temperature requirement A2(HtrA2) has been known as a human homologue of bacterial HtrA that has a molecular chaperone function. HtrA2 is mitochondrial serine protease that plays a significant role in regulating the apoptosis; however, the physiological function of HtrA2 still remains elusive. To establish experimental system for the investigation of new insights into the function of HtrA2 in mammalian cells, we first obtained $HtrA2^{+/+}$ and $HtrA2^{-/-}$ MEF cells lines and identified those cells based on the expression pattern and subcellular localization of HtrA2, using immunoblot and biochemical assays. Additionally, we observed that the morphological characteristics of $HtrA2^{-/-}$ MEF cells are different form those of $HtrA2^{+/+}$ MEF cells, showing a rounded shape instead of a typical fibroblast-like shape. Growth rate of $HtrA2^{-/-}$ MEF cells was also 1.4-fold higher than that of $HtrA2^{+/+}$ MEF cells at 36 hours. Furthermore, we verified both MEF cell lines induced caspsase-dependent cell death in response to apoptotic stimuli such as heat shock, staurosporine, and rotenone. The relationship between HtrA2 and heat shock-induced cell death is the first demonstration of the research field of HtrA2. Our study suggests that those MEF cell lines are suitable reagents to further investigate the molecular mechanism by which HtrA2 regulates the balance between cell death and survival.

In Vitro Cytotoxicity, Skin Regeneration, Anti-wrinkle, Whitening and In Vivo Skin Moisturizing Effects of Oncheongeum (온청음 물 추출물의 세포독성, 피부재생, 주름개선, 미백 및 보습 효과)

  • An, Tteul-E-Bom;Kim, Dong-Chul
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.29 no.1
    • /
    • pp.14-34
    • /
    • 2016
  • Objectives: The objective of this study was to evaluate the effects of cytotoxicity, skin regeneration, anti-wrinkle, whitening and skin moisturizing of Oncheongeum (OCE).Methods: The cytotoxicity of OCE lyophilized aqueous extracts (yield=13.82%) was observed against human normal fibroblast cells and B16/F10 murine melanoma cells by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium Bromide (MTT) assay, and skin regeneration and anti-wrinkle effects were also evaluated through the assay of collagen type I synthesis compared to the transformation of the growth factor (TGF)-β1, hyaluronidase, collagenase and matrix metalloproteinase (MMP)-1 inhibitory assays compared to oleanolic acid (OA), and elastase inhibitory effects compared to phosphoramidon disodium salt (PP). In addition, OCE’s whitening effects were measured by a tyrosinase inhibitory assay and melanin formation test in B16/F10 murine melanoma cells compared to arbutin, and skin moisturizing effects were observed through a mouse skin water content test, respectively. Results: No OCE treatment-related cytotoxic effects appeared on human normal fibroblasts and B16/F10 murine melanoma cells. OCE concentration-dependently increased the collagen Type I synthesis on human normal fibroblast cells, and also effectively inhibited hyaluronidase, elastase, collagenase and MMP-1 activities. In addition, OCE inhibited melanin production of B16/F10 murine melanoma cells and activity of tyrosinase. And significant and dose-dependent increases of skin water content were detected in OCE-treated mouse skin compared to vehicle control skins. Conclusions: OCE showed favorable and sufficient effects in skin regeneration, anti-wrinkle, whitening and skin moisturizing in this experiment. But more detail mechanisms and studies on the skin protective efficiency of in vivo are needed with the screening of active biological compounds in individual OCE herbs.

Enhance of Migration and Proliferation of Cells from Tendon Biopsies by High Voltage Pulsed Current Stimulation (고전압맥동전류자극에 의한 생검 건의 세포 이동 및 증식 증진)

  • Lee Jae-Hyoung;Jekal Seung-Joo;Park Rae-Joon
    • The Journal of Korean Physical Therapy
    • /
    • v.14 no.2
    • /
    • pp.162-171
    • /
    • 2002
  • The purpose of this study was to examined whether high voltage pulsed current stimulation(HVPCS) enhances the migration and proliferation of fibroblasts from tendon biopsies to provides evidence that the cellular activities of fibroblast are enhanced by HVPCS. Flexor digitorum profundus tendon of chickens were excised, biopsied and cultured in M199 medium for a day. The biopsies through which a cathodal HVPC with 100 pps, 50 V for 30 minutes was passed in medium. A day after treatment, the biopsies embedded in fibrin clot were covered by the addition of 1ml of M199 medium to the well, and placed in the $CO_2$ incubator for the duration of the experiment. The migration distance of cells from tendon biopsies were measured at 6 days after treatment, and proliferation of cells from tendon biopsies were measured at 7 days after treatment. The migration distance of cells from tendon biopsies in the HVPCS group demonstrated significantly greater than the shame treated control group (t=-2.675, p<0.05). Also HVPCS had significantly increased optical density of fibroblasts from tendon biopsies (t=-2.136, p<0.05). These results indicate that the HVPCS with 100pps, 50V for 30minutes enhanced either the migration and proliferation of fibroblast from tendon biopsies. These results supposed that the HVPCS activates cellular responses in fibroblasts from tendon biopsies. This suggests that enhanced the migration and proliferation of fibroblast by HVPCS may be one of the mechanism involved in tendon healing.

  • PDF

Evaluation of the Genetic Toxicity of Synthetic Chemicals (IV) - in vitro Chromosomal Aberration Assay with 18 Chemicals in Chinese Hamster Lung Cells -

  • Ryu, Jae-Chun;Kim, Kyung-Ran;Kim, Youn-Jung
    • Environmental Mutagens and Carcinogens
    • /
    • v.22 no.3
    • /
    • pp.149-156
    • /
    • 2002
  • The detection of many synthetic chemicals used in industry that may pose a genetic hazard in our environment is of great concern at present. Since these substances are not limited to the original products, and enter the environment, they have become widespread environmental pollutants, thus leading to a variety of chemicals that possibly threaten the public health. In this respect, to regulate and to evaluate the chemical hazard will be important to environment and human health. The clastogenicity of 18 synthetic chemicals was evaluated in Chinese hamster lung fibroblast cells in vitro. 4-Chloro-3,5-dimethyl phenol (CAS No. 88-04-0) induced chromosomal aberrations with significance at the concentration of 15.7 $\mu\textrm{g}$/$m\ell$ both in the presence and absence of metabolic activation system. Phenoxybenzene (CAS No. 101-84-8) which is one of the most cytotoxic chemical among 18 chemicals tested revealed no clastogenicity in the range of 0.11-0.43 $\mu\textrm{g}$/$m\ell$ both in the presence and absence of metabolic activation system. From the results of chromosomal aberration assay with 18 synthetic chemicals in Chinese hamster lung cells in vitro, 4-chloro-3,5-dimethyl phenol (CAS No. 88-04-0) revealed weak positive clastogenic results in this study.

  • PDF

The Effect of Lipid Concentration in Culture Medium on Senescence and Lipid Peroxides Production of Fibroblast from Neonate Rats (배양액내 지방함량의 변화가 신생흰쥐 피부섬유아세포의 노화와 지질과산화물 생성에 미치는 영향)

  • 장영애
    • Journal of Nutrition and Health
    • /
    • v.29 no.1
    • /
    • pp.97-103
    • /
    • 1996
  • This study was performed to investigate the effects of lipid on cellular senescence, lipid peroxide production, and morphological changes. For this study we used primary skin fibroblasts from neonate rats grown in media various lipid contents. Fibroblasts were cultured until they lost their proliferation potential either in control medium (Dulbecco's modified Eagle's medium supplement with 10% fetal bovine serum) or in media supplemented with various concentrations of lipid-cholesterol rice component from bovine serum. Cumulative population doublings(CPD, as an index of cellular life span), and cellular thiobarbituric acid reactive substances (TBARS, as an index of lipid peroxide) concentrations were measured and morphological changes were observed. CPD were shortened with increasing lipid concentration in media ; 28.12 for cells grown in control medium and 13.42, 11.42, and 6.19 for those grown in 0.1%, 1% and 5% lipid rich components containing media, respectively. Cellular proliferation ratios were those grown in 5% lipid rich components containing media were delayed and they were degenerated soon. TBARS concentrations were increased with increasing concentration of lipid in media. Morphological changes were observed in cells grown in control medium by cellular senescence. Especially lipid droplets were observed in cells grown in 5% lipid rich components containing media. Therefore it seems that lipid contents in media had an effect on cellular proliferation and cellular life span, possibly via lipid peroxide production.

  • PDF

Role of Non-Thermal DBD Plasma on Cell Migration and Cell Proliferation in Wound Healing

  • Ali, Anser;Lee, Seung Hyun;Kim, Yong Hee;Uhm, Han Sup;Choi, Eun Ha;Park, Bong Joo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.526-526
    • /
    • 2013
  • Plasma technology isbeing developed for a range of medical applications including wound healing. However, the effect of plasma on many cells and tissues is unclear. Cell migration and cell proliferation are very important biological processes which are affected by plasma exposure and might be a potential target for plasma therapy during wound healing treatment. In this study, we confirmed the plasma exposure time and incubation time after plasma treatment in skin fibroblast (L-929 cells) to evaluate the optimal conditions forplasma exposure to the cell in-vitro. In addition, we used a scratch method to generate artificial wound for evaluating the cell migration by plasma treatment. Where, the cells were treated with plasma and migration rate was observed by live-cell imaging device. To find the cell proliferation, cell viability assay was executed. The results of this study indicate the increased cell proliferation and migration on mild plasma treatment. The mechanisms for cell migration and cell proliferation after plasma treatment for future studies will be discussed.

  • PDF

Fermented Acanthopanax koreanum Root Extract Reduces UVB- and H2O2-Induced Senescence in Human Skin Fibroblast Cells

  • Park, Min-Ja;Bae, Young-Seuk
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.7
    • /
    • pp.1224-1233
    • /
    • 2016
  • The present study assessed the effects of an aqueous extract of Acanthopanax koreanum root (AE) and of AE following fermentation by lactic acid bacteria (Lactobacillus plantarum and Bifidobacterium bifidum) (AEF) on human skin fibroblast HS68 cells exposed to ultraviolet B (UVB) irradiation and oxidative stress. AEF effectively antagonized the senescence-associated β-galactosidase staining and upregulation of p53 and p21Cip1/WAF1 induced by UVB or H2O2 treatment in HS68 cells. It also exhibited excellent antioxidant activities in radical scavenging assays and reduced the intracellular level of reactive oxygen species induced by UVB or H2O2 treatment. The antioxidant and antisenescent activities of AEF were greater than those of nonfermented A. koreanum extract. AEF significantly repressed the UVB- or H2O2-induced activities of matrix metalloproteinase (MMP)-1 and -3, overexpression of MMP-1, and nuclear factor κB (NF-κB) activation. This repression of NF-κB activation and MMP-1 overexpression was attenuated by a mitogen-activated protein kinase activator, suggesting that this AEF activity was dependent on this signaling pathway. Taken together, these data indicated that AEF-mediated antioxidant and anti-photoaging activities may produce anti-wrinkle effects on human skin.

Cytotoxic Potentials of Tellurium Nanowires in BALB/3T3 Fibroblast Cells

  • Mahto, Sanjeev Kumar;Vinod, T.P.;Kim, Jin-Kwon;Rhee, Seog-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3405-3410
    • /
    • 2011
  • We have investigated the cytotoxic potential of tellurium (Te) nanowires in BALB/3T3 fibroblast cells. Te nanowires were synthesized through an aqueous phase surfactant assisted method. Toxicological experiments, such as analysis of morphological changes, MTT assay, DAPI staining, and estimation of intracellular reactive oxygen species, were carried out to reveal the cytotoxic effects of Te nanowires. Te nanowires were found to be cytotoxic at all concentrations tested, in a dose-dependent manner. The UV/Vis spectra of Te nanowires suspended in a culture medium showed drastic changes and disappearance of two broad absorption peaks. The physicochemical properties such as, surface charge, size, and shape of Te nanowires were found to be altered during exposure of cells, due to the instability and agglomeration of nanowires in the culture medium. These results suggest that the chemical components of the DMEM medium significantly affect the stability of Te nanowires. In addition, TEM images revealed that necrosis was the basic pattern of cell death, which might stem from the formation of toxic moieties of tellurium, released from nanowire structures, in the bioenvironment. These observations thus suggest that Te nanomaterials may pose potential risks to environmental and human health.

Evaluation of the Genetic Toxicity of Synthetic Chemicals (XIV)-in vitro Chromosomal Aberration Assay with 11 Chemicals in Chinese Hamster Lung Cells

  • Kim, Youn-Jung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.2
    • /
    • pp.89-96
    • /
    • 2006
  • The detection of many synthetic chemicals used in industry that may pose a genetic hazard in our environment is of great concern at present. Since these substances are not limited to the original products, and enter the environment, they have become widespread environmental pollutants, thus leading to a variety of chemicals that possibly threaten the public health. In this respect, to regulate and to evaluate the chemical hazard will be important to environment and human health. The clastogenicity of 11 synthetic chemicals was evaluated in Chinese hamster lung fibroblast cells in vitro. 1-Chloro-3-bromopropane CAS No. 109-70-6) induced chromosomal aberrations with significance at the concentration of $185.0\;{\mu}g/mL\;and\;1,600\;{\mu}g/mL$ both in the presence and absence of metabolic activation system, respectively. Triphenyl phosphite (CAS No. 101-02-0), which is one of the most cytotoxic chemical among 11 chemicals tested revealed no clastogenicity in the range of $95.0-4.9\;{\mu}g/mL$ both in the presence and absence of metabolic activation system. From the results of chromosomal aberration assay with 11 synthetic chemicals in Chinese hamster lung cells in vitro, 1-chloro-3-bromopropane revealed a positive clastogenic result in this study.