• Title/Summary/Keyword: fibroblast cells

Search Result 1,087, Processing Time 0.031 seconds

Development of Cosmetic Ingredient by Fermented Paprika Juice (파프리카 발효즙의 화장품 소재개발 연구)

  • Bae, Soo Jung;Song, Min Hyeon;Oh, Jung Young;Bae, Jun Tae;Kim, Jin Hwa;Lee, Geun Soo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.44 no.2
    • /
    • pp.117-124
    • /
    • 2018
  • In this study, cosmetic materials were developed using a new method of making juice through the fermentation of raw natural materials with microorganisms in order to supplement the advantages and disadvantages of an organic solvent extraction method and a microbial fermentation method. The natural products were selected from two colors (red, green) of paprika known to be rich in various colors and vitamins. The microorganisms used for fermentation were fermented by inoculating paprika with lactic acid bacteria (Lactobacillus plantarum) having sugar-hydrolyzed ability. First, we investigated the changes of physiologically active substances of two kinds of paprika juice and two kinds of fermented paprika juice. Total phenols content and total flavonoids content were higher in the fermented paprika juice than in the paprika juice, and especially in the fermented red paprika juice. Free radical scavenging effect and lipid peroxidation inhibitory effect were also showed an excellent antioxidative effect on paprika fermented juice, among which the effect of red paprika fermentation juice was the highest. The expression of MMP-1 in fermented red paprika juice with high antioxidant activity was inhibited by concentration-dependent expression of MMP-1 mRNA and MMP-1 protein. In the glycation experiments with aging, the anti-glycation effect of fermented paprika juice was highly inhibited by the production of advanced glycation end-products (AGEs), which was closely related to the antioxidant effect. In addition, the activity of senescence-associated ${\beta}$-galactosidase (SA-${\beta}$-gal), an indicator of cell senescence, was measured using human dermal fibroblast (HDF). The results showed that the cell senescence was inhibited when the cells were treated with fermented paprika juice. In conclusion, fermented paprika juice using lactic acid bacteria showed better antioxidative and anti-aging effects than paprika juice. Among them, fermented red paprika juice has the best antioxidant and anti-aging effect and can be applied as natural new material of antioxidant and anti-aging.

Clinical Significance of Plasma TGF-${\beta}_1$ in Coal Workers' Pneumoconiosis (탄광부 진폐증에서 혈장 Transforming Growth Factor-${\beta}_1$의 의의)

  • Kim, Chong-Ju;Lee, Won-Yeon;Hong, Ae-Ra;Shin, Pyo-Jin;Yong, Suk-Joong;Shin, Kye-Chul
    • Tuberculosis and Respiratory Diseases
    • /
    • v.50 no.1
    • /
    • pp.76-83
    • /
    • 2001
  • Background : Coal workers' pneumoconiosis is a fibrotic lung disease resulting from chronic inhalation of coal dust. The precise mechanism of lung fibrosis in coal workers' pneumoconiosis is uncertain. However, a relationship between the stimulation of fibroblast proliferation and collagen production by mediators released from in flammatory and resident lung cells is thought to be a major factor. The transforming growth factor-$\beta$(TGF-$\beta$), a multifunctional cytokine and growth factor, plays a key role in the scarring and fibrotic processes due to its ability to induce extracellular matrix proteins and modulate the growth and immune function of many cell types. To determine the involvement of TGF-$\beta$ in the development of lung fibrosis in coal workers' pneumoconiosis, the TGF-${\beta}_1$ level in plasma was measured in patients with coal workers' pneumoconiosis. Methods : Plasma was collected from 40 patients with coal workers' pneumoconiosis (20 with simple coal workers' pneumoconiosis and 20 with complicated coal workers' pneumoconiosis) and from 10 normal controls. The ELISA method was used to measure the plasma TGF-${\beta}_1$ concentration. Results : Compared to the control group ($0.63{\pm}01.8$ ng/mL), there was no significant difference in the plasma TGF-${\beta}_1$ level in patients with simple coal workers' pneumoconiosis ($0.64{\pm}0.17$ ng/mL) (p>0.05). However, in patients with complicated coal workers' pneumoconiosis the plasma TGF-${\beta}_1$ level ($0.79{\pm}0.18$ ng/mL) was significantly higher than in patients with simple coal workers' pneumoconiosis and the control group (p<0.05). Conclusion : The data suggests that TGF-${\beta}_1$ has some influence in the development of lung fibrosis in coal workers' pneumoconiosis.

  • PDF

Evaluation of changes in adhesive strength and cytotoxicity of a denture adhesive according to time (시간에 따른 의치접착제의 인장 결합강도와 세포독성의 변화)

  • Jung, Ha-Yoon;Kim, Jee-Hwan;Lee, Keun-Woo;Shim, June-Sung;Moon, Hong-Seok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.2
    • /
    • pp.232-239
    • /
    • 2009
  • Statements of the problem: Many denture wearers occasionally use denture adhesives to improve denture retention, stability and chewing efficiency. An ideal denture adhesive is nontoxic, non-irritating, and provides comfort to the oral mucosa. Purpose: The purpose of this study was to evaluate the cytotoxicity and adhesive properties of a selected denture adhesive. Material and methods: To test cytotoxicity of the selected denture adhesive, mouse fibroblast cells were used in MTT testing. Cytotoxicity was examined according to the concentration of the denture adhesive and incubated for 1 to 4 days. To examine adhesive property, a denture base was fabricated on an edentulous dentiform. The adhesive was applied to the denture base, then tensile bond strength was measured, to evaluate the change in retention during 3 days. Results and Conclusion: 1. 1% and 2% concentration denture adhesive cream had no cytotoxicity. 2. The tensile bond strength of the group with both denture adhesive and artificial saliva was significantly higher than that of the group with only denture adhesive(P<.05). The tensile bond strength of the group with denture adhesive was significantly higher than that of with only artificial saliva(P<.05). 3. The tensile bond strength had no significant change during 1 hour, and then gradually decreased. After 1 day, it decrease to half. Within the limitation of this study, the tested denture adhesive had no cytotoxicilty and was effective in improving denture retention. The adhesive strength began to continuously decrease after 1 hour and it decreased to half at 1 day after application.

The Studies on the Development of Low Irritable Preservative System with Phenoxyethanol in Cosmetics (Phenoxyethanol을 이용한 저자극 방부시스템 개발에 관한 연구)

  • Ahn, Gi-Woong;Lee, Chn-Mong;Kim, Hyeong-Bae;Jeong, Ji-Hen;Jo, Byoung-Kee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.31 no.1 s.49
    • /
    • pp.43-49
    • /
    • 2005
  • Recently, according as people who have sensitive skin increase, we've been giving more importance to the safety of cosmetics. Especially, preservative is known to be one of the main stimuli which cause side-effects of cosmetics. However, there have been few reports describing cell cytotoxicity, skin penetration, oil-aqueous phase partition, anti-microbial activity of preservatives and their correlation with skin irritation. The study is aimed to develop low irritable preservative system with phenoxyethanol, one of the most commonly used preservatives in cosmetics, considering various factors mentioned above. According to our results of cell cytotoxicity against human normal fibroblasts by means of MTT assay, phenoxyethanol showed the lowest cytotoxicity when compared to other preservatives tested (cytotoxicity: pro-pylparaben > butylparaben > ethylparaben > methylparaben > triclosan > phenoxyethanol), but human patch test for assessing shin primary irritation revealed that phenoxyethanol has higher skin irritation than methylparaben and triclosan. We performed in vitro skin penetration test using horizontal Franz diffusion cells with skin membrane prepared from hairless mouse (5 ${\~}$ 8 weeks, male) to evaluate the rate of skin penetration of preservatives. From the results, we found that the higher irritable property of phenoxyethanol in human skin correlates with its predominant permeability (skin penetration: phenoxyethanol > methylparaben > ethylparaben > propylparaben > butylfaraben > triclosan). Therefore, we made an effort to reduce skin permeability of phenoxyethanol and found that not only the rate of skin penetration of phenoxyethanol but also its skin irritation is dramatically reduced in formulas containing oils with low polarity. In the experiments to investigate the effect of oil polarity on the oil-aqueous phase partition of phenoxyethanol, more than $70\%$ of phenoxyethanol was partitioned in aqueous phase in formulas containing oils with low polarity, while about $70 {\~} 90\%$ of phenoxyethanol was partitioned in oil phase in formulas containing oils with high polarity. Also, in aqueous phase phenoxyethanol showed greater anti-microbial activity. Conclusively, it appears that we can develop less toxic preservative system with reduced use dosage of phenox-yethanol and its skin penetration by changing oil composition in formulas.

The Effect of Photomodulation in Human Dermal Fibroblasts (피부 섬유아세포에서 광자극의 효과)

  • Kim, Mi Na;Kwak, Taek Jong;Kang, Nae Gyu;Lee, Sang Hwa;Park, Sun Gyoo;Lee, Cheon Koo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.4
    • /
    • pp.325-331
    • /
    • 2015
  • Skin is exposed to sunlight or artificial indoor light on a daily. The reached solar light on the earth surface consist of 50% visible light and 45% infrared (IR) except for ultra violet (UV). The negative effects of UV including UVB and UVA have been steadily investigated within the last decades. However, little is known about the effects of visible or IR light. In this study, we irradiated human dermal fibroblasts using light emitting diode (LED) to investigate the optimal parameter for enhancing cell growth and collagen synthesis. We found that red of 630 nm and green of 520 nm enhance the cell proliferation, but irradiation with purple and blue light exerts toxic effects. To examine the response of irradiation time and light intensity on the fibroblasts, cells were exposed to red or green light with intensities from 0.05 to $0.75mW/cm^2$. Procollagen secretion was increased of 1.4 fold by 10 min irradiation, while 30 min treatment decreased the collagen synthesis of dermal fibroblasts. Treatment with red of $0.3mW/cm^2$ and green of 0.15 and $0.3mW/cm^2$ resulted in enhancement of collagen mRNA. Lastly, we investigated the combinatorial effect of red and green light on dermal fibroblasts. The sequential irradiation of red and green light is an efficient way for the purpose of the increase in the number of fibroblasts than single light treatment. On the other hand, the exposure of red light alone was more effective method for enhancing of collagen secretion. Our study showed that specific light parameters accelerated cell proliferation, gene expression and collagen secretion on human dermal fibroblasts. In conclusion, we demonstrate that light exposure with specific parameter has beneficial effects on the function of dermal fibroblasts, and suggests the possibility of its cosmetically and clinical application.

A Study of Anti-wrinkle Activities as a Functional Cosmetic Ingredient of Rhododendron brachycarpum Extracts (만병초(Rhododendron brachycarpum) 추출물의 기능성 화장품 소재로써의 주름개선 활성에 관한 연구)

  • Yeom, Hyeon-Ji;Oh, Min-Jeong;Chae, Jung-Woo;Lee, Jin-Young
    • Journal of Life Science
    • /
    • v.32 no.8
    • /
    • pp.622-632
    • /
    • 2022
  • The purpose of this study was to investigate activities as functional cosmetic materials, focusing on Rhododendron brachycarpum (RB) and Rhododendron fortunei (RF). The tyrosinase inhibitory effect, related to skin-whitening, was 32.6% and 39.3% respectively at the concentration of 1,000 ㎍/ml. The elastase inhibitory effect, related to skin anti-wrinkling activity, was 30% and 36.2% at 1,000 ㎍/ml concentration. Collagenase inhibitory activity showed 77.7%, and 80.2% respectively at 1,000 ㎍/ml concentration, which demonstrated excellent inhibitory activity. For a cell viability test, that measured on fibroblast cells by RB and RF extracts. Furthermore, the cell viability test showed 100.9% and 98.9% with cell viability at 100 ㎍/ml concentration in CCD-986Sk. The protein expression inhibitory effect of RB and RF extracts was measured by western blot at 25, 50, and 100 ㎍/ml concentrations, and the β-actin was used as a positive control. As a result, western blot of RB and RF extracts was measured by the expression inhibition rate of the MMP-1, MMP-2, MMP-3 protein, and was decreased by 67.2%, 65.5%, 13.6%, and 89.1%, 85.0%, and 62.7% at 100 ㎍/ml concentration. The mRNA expression inhibitory effect of RB and RF extracts was measured by RT-PCR at 25, 50, and 100 ㎍/ml concentrations, and the GAPDH was used as a positive control. According to the results of RT-PCR of RB and RF extracts, the expression inhibition rate of the MMP-1, MMP-2, and MMP-3 mRNA was decreased by 70.1%, 9.1%, 37.9%, and 38.2%, 8.3%, 57.3% at 100 ㎍/ml concentrations. So, RB and RF extracts showed the anti-wrinkle effectiveness as a functional cosmetic material.

Antioxidant and Antiwrinkle Effects of Persimmon Leaves extract (시엽(Persimmon Leaves) 에탄올 추출물의 항산화와 항주름 효과)

  • Sung-Hee Kim;Dong-Hee Kim;Wi-Hye Yeon;Jin-Tae Lee;Young-Ah Jang
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.3
    • /
    • pp.534-546
    • /
    • 2023
  • In this study, we investigated the antioxidant and anti-winkle activity in human fibroblast cell (CCD-986sk) of Persimmon Leaves (PL) as a cosmetic ingredient. As a result of investigating antioxidant activity through electron-donating ability and ABTS+ radical scavenging assay, the PL showed concentration-dependent antioxidant activity similar to ascorbic acid, a control group, at a concentration of 1,000 ㎍/ml. As a result of investigating the anti-wrinkle effect through elastase inhibition and collagenase inhibition assay, the PL showed concentration-dependent antioxidant activity similar to epigallocatechin gallate, a control group, at a concentration of 1,000 ㎍/ml. As a result of measuring the synthesis rate of pro-collagen type I and the inhibition rate of MMP-1 in UVB-induced CCD-986sk cells, the control group EGCG showed a 90.2% pro-collagen synthesis rate at 20 ㎍/ml and PL showed an 88.5% synthesis rate at 30 ㎍/ml. In addition, the inhibition rate of MMP-1 of 33.0% and 40.8% were confirmed in EGCG 20 ㎍/ml and PL 30 ㎍/ml, respectively. As a result of measuring the protein expression of pro-collagen type I and MMP-1 in the PL through western blot, it was confirmed that the protein expression of pro-collagen type I increased, and MMP-1 decreased when the PL was treated together compared to the UVB alone group. According to the above experimental results, it is expected to be used as a natural product material for cosmetics by confirming that the PL prevent photoaging caused by UVB stimulation and have antioxidant and anti-wrinkle effects.