• Title/Summary/Keyword: fibroblast cells

Search Result 1,087, Processing Time 0.032 seconds

Inhibition of ERK1/2 Activation and Cytoskeleton Rearrangement by the Recombinant Protein of Plasminogen Kringle 5 (Plasminogen kringle 5 재조합 단백질에 의한 ERK1/2 활성화 및 세포골격 재배열 억제)

  • Ha, Jung-Min;Kim, Hyun-Kyung;Kim, Myoung-Rae;Joe, Young-Ae
    • Journal of Life Science
    • /
    • v.16 no.7 s.80
    • /
    • pp.1199-1206
    • /
    • 2006
  • Plasminogen kringle 5 is a potent inhibitor of endothelial tell proliferation like an endogenous angiogenesis inhibitor, angiostatin consisting of plasminogen kringles 1-4. In this study, we produced the recombinant protein of plasminogen kringle 5 (PK5) employing an Pichia expression system and examined its. effect on~endothelial cell migration and its possible inhibitory mechanism. PK5 was expressed in Pichia pastoris GS115 by fusion of the cDNA spanning from Thr456 to Phe546 to the secretion signal sequence of a-factor prepro-peptide. After methanol induction, the secreted PK5 was purified by using S-spin column. SDS-PACE analysis of the purified protein showed one major band of approximately 10kDa. In in vitro migration assays, the purified protein inhibited dose-dependently the migration of human umbilical endothelial cells (HUVECs) induced by basic fibroblast growth factor (bFGF) or vascular endothelial growth factor (VEGF) with an $IC_{50}$ of approximately 500nM. Accordingly, it inhibited bfGF-stimulated extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation in HUVECs at 500nM. In addition, it also potently inhibited bFGF-induced cytoskeletal rearrangement of HUVECs. Thus, these results suggest that Pichia-produced PK5 effectively inhibits endothelial cell migration, in part by suppression of ERK1/2 activation and blocking cytoskeleton rearrangement.

Involvement of Brca1 in DNA Interstrand Cross-link Repair Through Homologous Recombination-independent Process (재조합 비의존적 경로를 통한 DNA 사슬간 교차결합 복구에의 Brca1단백질의 기능)

  • Yun, Jean-Ho
    • Journal of Life Science
    • /
    • v.15 no.4 s.71
    • /
    • pp.542-547
    • /
    • 2005
  • Hypersensitivity of cells lacking Brcal to DNA interstrand .ross-link (ICL) agents such as cisplatin and mitomycin C(MMC) implicates the important role of Brcal in cellular response following ICL treatment. Brca1 plays an essential role in DNA double-strand break (DSB) repair through homologous recombination (HR)-dependent and -independent process. Recently, our group has been reported that Brca1 involves in cellular ICL response through HR-dependent repair process (Yun J. et at., Oncogene 2005). In this report, the involvement of Brca1 protein in HR-independent repair process is examined using isogenic $p53^{-/-}\;and\;p53^{-/-}\;Brcal^{-/-}$ mouse embryonic fibroblast (MEF) and psoralen cross-linked reporter reactivation assay. Brcal-deficient MEFs showed significantly low HR-independent repair activity compare to Brca1-proficient MEFs. Hypersensitivity to MMC and ICL reporter repair activity were restored by the reconstitution of Brca1 expression. Interestingly, MEFs expressing exon 11-deleted isoform of Brca1 $(Brca1^{\Delta11/\Delta11})$ showed high resistance to MMC and ICL reporter repair activity comparable to Brca1-reconstituted MEFs. Taken together, these results suggest that Brca1 involves in ICL repair through not only HR-dependent process but also HR-independent process using N-terminal RINC finger domain or C-terminal BRCT domain rather than exon 11 region which mediate interaction with Rad50.

Beneficial Effect of Collagen Peptide Supplement on Anti-aging Against Photodamage (콜라겐 펩타이드의 피부 광노화 예방 효과)

  • Kim, Jeong-Kee;Lee, Ji-Hae;Yang, Mi-Sook;Seo, Dae-Bang;Lee, Sang-Jun
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.4
    • /
    • pp.441-445
    • /
    • 2009
  • Recent research has revealed that hydrolyzed collagen peptides have beneficial effects in various diseases such as osteoarthritis and human rheumatoid arthritis and also play a protective role in skin by improving the activity of antioxidants. In this study, we investigated the effects of a novel mixture (AP-CPM01) containing collagen peptides and elastin peptides on photoaged hairless mice skin both in vivo and in vitro. To evaluate the effects of AP-CPM01 on UVBinduced skin wrinkle formation in vivo, the hairless mice were exposed to UVB irradiation and orally administered the AP-CPM01 at 333 mg/kg per day for 10 weeks. The effects on skin appearance and epidermal thickness were measured using bioengineering and histochemical methods. In addition, the influence of AP-CPM01 on collagen metabolism in human skin fibroblasts was also investigated. The skin of mice in the AP-CPM01 treated group had better appearance and less wrinkling than that of mice in the control group. In the human fibroblast cells, the amount of de novo procollagen synthesis was increased after AP-CPM01 treatment, reflecting that AP-CPM01 can induce de novo procollagen synthesis and reduce UVB-induced skin wrinkle formation. These results suggest that AP-CPM01 is a potent candidate for antiphotoaging functions.

Involvement of Bcl-2 Family and Caspases Cascade in Sodium Fluoride-Induced Apoptosis of Human Gingival Fibroblasts

  • Jung, Ji-Yeon;Park, Jae-Hong;Jeong, Yeon-Jin;Yang, Kyu-Ho;Choi, Nam-Ki;Kim, Sun-Hun;Kim, Won-Jae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.5
    • /
    • pp.289-295
    • /
    • 2006
  • Sodium fluoride (NaF) has been shown to be cytotoxic and elicit inflammatory response in human. However, the cellular mechanisms underlying NaF-induced cytotoxicity in periodontal tissues have not yet been elucidated. This study is aimed to investigate the mechanisms of NaF-induced apoptosis in human gingival fibroblast (HGF). NaF decreased the cell viability of HGF in a dose- and time-dependent manner. NaF gave rise to apoptotic morphological changes including cell shrinkage, chromatin condensation, and DNA fragmentation. However, NaF did not affect the production of ROS. In addition, NaF augumented cytochrome c release from mitochondria into the cytosol, and enhanced caspase -9 and -3 activities., cleavage (85 kDa fragments) of poly (ADP-ribose) polymerase (PARP) and upregulation of voltage-dependent anion channel (VDAC) 1. These results demonstrated that NaF-induced apoptosis in HGF may be mediated with mitochondria. Furthermore, NaF elevated caspase-8 activity and upregulated Fas-ligand (Fas-L), suggesting involvement of death receptor mediated pathway in NaF-induced apoptosis. Expression of Bcl-2, an anti-apoptotic Bcl-2 family, was downregulated, whereas expression of Bax, a pro-apoptotic Bcl-2 family, was not affected in NaF-treated HGF. These results suggest that NaF induces apoptosis in HGF through both mitochondria- and death receptor-mediated pathway mediated by Bcl-2 family.

Differential Gene Expression in the Bovine Transgenic Nuclear Trasnsfer Embryos (소 형질전환 복제란의 유전자 이상발현 규명)

  • Cho, Jong-Ki;Song, Bong-Seok;Yong, Hwan-Yul;Lee, Doo-Soo;Koo, Deok-Bon;Lee, Kyung-Kwang;Shin, Sang-Tae
    • Journal of Veterinary Clinics
    • /
    • v.24 no.3
    • /
    • pp.295-299
    • /
    • 2007
  • The detrimental effects of gene transfection on embryo development and the molecular mechanism behind the differential expression of genes related to early embryo development were assessed in the production of transgenic cow embryos through somatic cell nuclear transfer (NT). Parthenogenetic, IVF, and transgenic NT embryos derived from ${\alpha}_1$-antitrypsin transfected ear fibroblast cells was produced. To investigate the molecular mechanism behind lower developmental competence of transgenic NT embryos, the differential mRNA expression of three genes ($IFN-{\tau}$, Oct4, Fgf4) in the 3 types of embryo (Parthenogenetic, IVF, transgenic NT) was examined. RNA was extracted from ten blastocysts derived from 3 types of embryos and reverse-transcripted for synthesis of the first cDNA. The quantification of 3 gene transcripts ($IFN-{\tau}$, Oct4, and Fgf4) was carried out in three replicate by quantitative real-time reverse transcriptase PCR. Expression level of $IFN-{\tau}$ mRNA was significantly higher in transgenic NT embryos than parthenogenetic and IVF embryos (P<0.05). However, expression level of Oct4 and Fgf4 of transgenic NT embryos was significantly lower than IVF embryos (P<0.05). Altered levels of these three mRNA transcripts may explain some of the embryonic/fetal/neonatal abnormalities observed in offspring from transgenic NT embryos.

Effects of Geiji-Bokryung-Hwan on eNOS, nNOS, Caveolin-1 and bFGF Protein Expressions and the Endothelial Cells of the Corpus Cavernosum in Hypercholesterolemic Rat

  • Kim Jae-Woo;Son Soo-Gon;Sa Eun-Ho;Kim Cherl-Ho;Park Won-Hwan
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.1
    • /
    • pp.174-180
    • /
    • 2006
  • We examine the effect of Geiji-Bokryung-Hwan(GBH) on erectile function in a rat model of hypercholesterolemic erectile dysfunction. GBH, a drug preparation consisting of five herbs of Cinnamomi Ramulus (Geiji), Poria Cocos (Bokryun), Mountan Cortex Radicis (Mokdanpi), Paeoniae Radix (Jakyak), and Persicae Semen (Doin) is a traditional Korean herbal medicine that is widely used in the treatment of atherosclerosis-related disorders. In this study, 3-month-old Sprague-Dawley rats were used. The 6 rats control animals were fed a normal diet and the other 18 rats were fed 1% cholesterol diet for 3 months. After 1 months, GBH was added to the drinking water of the treatment group of 12 rats but not the cholesterol only group of 6 rats. Of the 12 rats 6 received 30 mg/kg per day (group 1) and 6 received 60 mg/kg per day (group 2) of GBH. At 3 months erectile function was evaluated with cavernous nerve electrostimulation in all animals. Penile tissues were collected for electron microscopy, and to perform Western blot for endothelial nitric oxide synthase (eNOS), neuronal nitric oxide synthase (nNOS), basic fibroblast growth factor (bFGF) and caveolin-1. Systemic arterial pressure was not significantly different between the animals that were fed the 1% cholesterol diet and the controls. Conversely erectile function was not impaired in the herbal medicine treated rats. Electron microscopy showed many caveolae with fingerlike processes in the cavernous smooth muscle and endothelial cell membranes in control and treated rats but not in the cholesterol only group of rats. Western blot showed differences among groups in protein expression for eNOS, nNOS, caveolin-1 and bFGF protein expression in penile tissue. Increased eNOS and nNOS protein expressions dy high cholesterol diet were significantly decreased in group 1 and group 2. Interestingly, caveolin-1 and bFGF protein expression was significantly higher in groups 1 and 2 than in the cholesterol only and control groups.

Effects of glucose on metabolism and Insulin-like growth factor binding-3 expression in human fibroblasts. (사람의 섬유아세포에서 glucose 농도가 물질대사 및 Insulin-like growth factor binding protein-3의 발현에 미치는 영향)

  • Ryu, Hye-Young;Hwang, Hye-Jung;Kim, In-Hye;Ryu, Hong-Soo;Nam, Taek-Jeong
    • Journal of Life Science
    • /
    • v.17 no.5 s.85
    • /
    • pp.687-693
    • /
    • 2007
  • Insulin-like growth factor-I(IGF-I) has significant insulin-like anabolic effects which include the stimulation of glucose and amino acid uptake, as well as protein and glycogen synthesis. IGFs exist in serum and other biological fluids as complexes bound to a family of structurally related insulin-like growth factor binding proteins(IGFBPs). Six human IGFBPs can modulate the effects of IGFs on target tissues by several mechanisms, including altering the serum's half-life and the transcapillary transport of IGFs, as well as changing the availability of IGFs to specific cell surface receptors. Human fibroblasts secrete IGFBPs that can modify IGF-I action. Previous to our study using either Northern blotting, and Western blotting have shown that fibroblasts express mRNA IGFBP-3, -4, and -5, and synthesize these proteins. In addition, fibroblast cell lysates revealed that the IGFBP-3 was most abundant. For these reasons, we undertook to gain further insight into the effects of high and low glucose incubation condition on metabolism and IGFBP-3 expression. In results of metabolites and IGFBP-3 expression in GM10 cells cultivated with various glucose concentration, the consumption of glucose and accumulation of triglyceride were increased in condition of high glucose, and total protein level was decreased. in the course of time. After 5 days incubation, levels of free amino acid in medium containing glucose of high concentration glucose were higher than in conditions of low glucose. Although the levels of IGFBP-3 protein and mRNA levels were increased in low glucose, and IGFBP-3 was not affected by any pretense. Taken together, we suggest that the study of growth factors, like IGFs, might be a possible model of diabetes militus in cell, although the results in cell models were not in accord with in vivo.

Change of Extracellular Matrix of Human Vocal Fold Fibroblasts by Vibratory Stimulation (진동이 성대세포주의 세포외기질 변화에 대한 연구)

  • Kim, Ji Min;Shin, Sung-Chan;Kwon, Hyun-Keun;Cheon, Yong-Il;Ro, Jung Hoon;Lee, Byung-Joo
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.32 no.1
    • /
    • pp.15-23
    • /
    • 2021
  • Background and Objectives During speech, the vocal folds oscillate at frequencies ranging from 100-200 Hz with amplitudes of a few millimeters. Mechanical stimulation is an essential factor which affects metabolism of human vocal folds. The effect of mechanical vibration on the cellular response in the human vocal fold fibroblasts cells (hVFFs) was evaluated. Materials and Method We created a culture systemic device capable of generating vibratory stimulations at human phonation frequencies. To establish optimal cell culture condition, cellular proliferation and viability assay was examined. Quantitative real time polymerase chain reaction was used to assess extracellular matrix (ECM) related and growth factors expression on response to changes in vibratory frequency and amplitude. Western blot was used to investigate ECM and inflammation-related transcription factor activation and its related cellular signaling transduction pathway. Results The cell viability was stable with vibratory stimulation within 24 h. A statistically significant increase of ECM genes (collagen type I alpha 1 and collagen type I alpha 2) and growth factor [transforming growth factor β1 (TGF-β1) and fibroblast growth factor 1 (FGF-1)] observe under the experimental conditions. Vibratory stimulation induced transcriptional activation of NF-κB by phosphorylation of p65 subunit through cellular Mitogen-activated protein kinases activation by extracellular signal regulated kinase and p38 mitogen-activated protein kinases (MAPKs) phosphorylation on hVFFs. Conclusion This study confirmed enhancing synthesis of collagen, TGF-β1 and FGF was testified by vibratory stimulation on hVFFs. This mechanism is thought to be due to the activation of NF-κB and MAPKs. Taken together, these results demonstrate that vibratory bioreactor may be a suitable alternative to hVFFs for studying vocal folds cellular response to vibratory vocalization.

Protective Effect of Saponaria Extract Against UVB-Damage in Skin Fibroblasts (UVB로 산화적 손상을 유도한 피부섬유아세포에 Saponaria 추출물의 보호효과)

  • Kim, Bo-Ae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.39 no.5
    • /
    • pp.644-651
    • /
    • 2022
  • The skin is the largest organ of the human body and protects the inside of the body. Ultraviolet rays cause various inflammatory reactions in the skin, including photoaging and oxidative damage. The purpose of this study is to investigate the protective effect of Saponaria extract by irradiating UVB on fibroblasts. In this study, the effectiveness of Saponaria showing protective activity against UVB-induced cytotoxicity, oxidative cell death, and NO and PGE2 production was evaluated. HS68 cells were irradiated with UVB(120 mJ/cm2) and treated with Saponaria extract at various concentrations of 100, 200, and 400 ㎍/mL for 24 hours. Intracellular reactive oxygen species (ROS) generated by ultraviolet B were detected using a spectrofluorometer after DCF-DA staining. Lipid peroxidation was also analyzed by measuring the level of 8-isoprostane secreted into the culture medium. As a result, treatment with Saponaria extract effectively inhibited UVB-induced cytotoxicity. Oxidative cell damage was mediated by PGE2 in UVB-induced HS68 fibroblasts, which was significantly inhibited by Saponaria extract treatment. In addition, it was evaluated that the protective effect of these extracts was mediated by the inhibition of intracellular ROS production and lipid peroxidation in a concentration-dependent manner. These results suggest that Saponaria extract can be used as an anti-aging functional material because it inhibits skin damage mediated by oxidative stress caused by UVB and exhibits a cellular protective effect.

Hair Growth Effect of TS-SCLF from Schisandra chinensis Extract Fermented with Lactobacillus plantarum

  • Young Min, Woo;Jae Yong, Seo;Soo-ya, Kim;Ji Hyun, Cha;Hyun Dae, Cho;Young Kwon, Cha;Ju Tae, Jeong;Sung Min, Park;Hwa Sun, Ryu;Jae Mun, Kim;Moon Hoy, Kim;Hee-Taek, Kim;Yong-Min, Kim;Kwang Sik, Joo;Sun Mi, Lee;JungNo, Lee;Andre, Kim
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.4
    • /
    • pp.533-547
    • /
    • 2022
  • This study investigated the hair growth effect of Schisandra chinensis extract (TS-SC) and TS-SC fermented by Lactobacillus plantarum (TS-SCLF) on human dermal papilla cells (hDPCs). The production of vascular endothelial growth factor (VEGF), insulin-like growth factor 1 (IGF-1), keratinocyte growth factor/fibroblast growth factor 7 (KGF/FGF-7) and hepatocyte growth factor (HGF), transforming growth factor beta 1 (TGF-β1) were examined. The secretion rates of VEGF and KGF/FGF-7 were high in TS-SC, and the secretion rates of IGF-1 and HGF were high in TS-SCLF. TGF-β1 was inhibited in a concentration-dependent manner in all samples. Gene expression of VEGF, IGF-1, KGF, HGF and alkaline phosphatase, relevant to hair growth, were examined. The data revealed that TS-SC and TS-SCLF successfully promoted hair growth in hDPCs. The IGF-1 gene was expressed in a dose-dependent manner in TS-SCLF. These results indicate that TS-SC and TS-SCLF fermented extract effectively promoted hair growth and gene expression relevant to hair growth in hDPCs. Used in clinical trials the test substance 'CMK-LPF01' showed a statistically significant increase in the number of hairs at 8 weeks, 16 weeks, and 24 weeks compared to before product use, and a change in hair growth, a secondary efficacy evaluation variable. Through additional research in the future, it is expected that "CMK-LPF01" can be developed as a functional material that can help alleviate symptoms of hair loss.