• 제목/요약/키워드: fiberglass

검색결과 129건 처리시간 0.02초

Analysis on Constituent Elements and Microstructure of Fiberglass Splint and Cast

  • Ham, Joo Hyun;Jung, Han Suk
    • 한국재료학회지
    • /
    • 제31권8호
    • /
    • pp.433-438
    • /
    • 2021
  • In this study, microstructural characteristics and constituent elements of fiberglass splint and cast are examined using a scanning electron microscope and an energy dispersive X-ray spectrometer. As observed by the scanning electron microscope, fiberglass splint and cast had a porous structure with many bundles of fiberglass textures well assembled. Spaces between bundles of the fiberglass splint are triangular or elliptical shaped and the long-axis diameter is measured at about 1 mm. The thickness of fiber bundles covered with plaster is measured at 600 ㎛ and the diameter of a single strand of fiberglass is up to 10 ㎛. The thickness of the fiberglass bundle of the fiberglass splint is measured at about 700 ㎛. Spaces between bundles are formed in the shape of triangles with gentle edges and long-axis diameter of up to 1.4 mm, which is larger than that of the splint. The thickness of a single strand of fiberglass of the plaster-coated cast is 11.5 ㎛, which is thicker than that of fiberglass of the splint. As a result of analyzing constituent elements of the fiberglass cast and the splint with an energy dispersive X-ray spectrometer, Ca, Si, and Al components are identically detected. This result shows that the fiberglass cast has a smoother surface with hardened plaster than the fiberglass splint. The thickness of the fiberglass bundle and the thickness of a single strand of the fiberglass are also larger than those of the fiberglass splint.

Study on The Preparation and Mechanical Properties of Fiberglass Reinforced Wood-Based Composite

  • Zhang, Yang;Ma, Yan
    • Journal of the Korean Wood Science and Technology
    • /
    • 제44권4호
    • /
    • pp.505-514
    • /
    • 2016
  • To study mechanical properties of fiberglass reinforced wood-based composite (FRWC), fiberglass with a diameter of $20{\mu}m$ was selected to prepare test specimens. Mechanical properties of fiberglass reinforced wood-based composite were determined by three-point-bending test while its microstructure was characterizes by scanning electron microscopy (SEM). The results showed that mechanical properties of fiberglass reinforced wood-based composite were superior to that of the wood fiberboard based on the contrasting mechanical curves and the analysis of fracture mechanism. It is believed that the material design with this "sandwich" structure brings a unique buffering capacity of fiberglass into play in the composites. So the specimen did not produce a sudden fracture failure at high level of applied loads because it had a bearing ability. The SEM analysis showed that the working strength of PVAc adhesive was high; under a bearing force, it could properly transfer a load. In addition, glass fiber mesh and wood fiber board combined well.

유리섬유에 의한 개의 진폐증 예 (Canine Pneumoconiosis Caused by Fiberglass)

  • 김두;정자룡;장욱;박정화;김종택
    • 한국임상수의학회지
    • /
    • 제13권2호
    • /
    • pp.204-207
    • /
    • 1996
  • Fiberglass may be a pulmonary toxin and carcinogen because it imitates asbestos, as do other man-made mineral fibers. A 5-months-old Jind dog was accidentally exposed to fiberglass extensively for 3 months in a site of apartment construction. Canine acute clinical pneumoconiosis caused by fiberglass was diagnosed by history, ezamination of environment, physical examination, and chest x-ray check of patient. The main signs were anorexia, dyspnea, increased irregular opacities and air trapping in lung field of chest x-ray films. Because the fiverglass which is used for several purpose are dangerous for health of animal and human. fiberglass dust must be controlled to minimize the adverse effects of fiberglass in the environment.

  • PDF

POWER SURGE TOOL LINE의 인간공학적 평가에 관한 연구 (Ergonomic Evaluation of The POWER SURGE TOOL LINE)

  • Seong-Rok Chang
    • 한국안전학회지
    • /
    • 제13권1호
    • /
    • pp.147-154
    • /
    • 1998
  • 본 연구의 목적은 수공구 손잡이의 재질과 형태가 작업 성능과 소비자 만족도에 미치는 영향을 정량적으로 평가하는데 있다. 본 연구는 삽, 써래, 괭이 등 수공구의 손잡이에 기존의 목재를 사용한 것과 fiberglass를 사용한 것을 인간공학적 척도로 비교 분석하였다. 연구 결과 fiberglass 재질의 홈이 파진 손잡이를 사용한 수공구가 기존의 목재 손잡이를 사용한 수공구보다 약 12% 효율적이며, 소비자의 만족도 면에서도 우수한 것으로 나타났다.

  • PDF

파티클보드에 보강된 유리섬유의 layer 수가 기계적 성질에 미치는 영향 (The effect of mechanical properties on the particleboard reinforced with fiberglass layer number)

  • 차재경
    • 한국가구학회지
    • /
    • 제21권5호
    • /
    • pp.347-353
    • /
    • 2010
  • This research examined the technical feasibility of composite that had 2- and 3- layers of fiberglass reinforcement to enhance the load carrying capacity of particleboard. Specimens were prepared from commercial particleboard. Results indicated that bending properties, hardness and impact bending energy increased as the number of layers of fiberglass reinforcement increased. The wood screw withdrawal load only decreased at the 3-layer of fiberglass reinforcement. The technique developed by this study may increase an opportunity to use particleboard for structural purposes.

  • PDF

MMA 개질 강화 플라스틱 복합관의 휨강성 (Flexural Rigidity of MMA-Modified Fiberglass Reinforced Plastic Composite Pipe)

  • 연규석;최종윤;백종만;권택정;정중호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.429-432
    • /
    • 2003
  • MMA-modified fiberglass-reinforced plastic composite pipe was produced by using the binder of MMA-modified unsaturated polyester resin in which low viscosity MMA was added to unsaturated polyester resin. Sixteen specimens were made of polymer mortar and fiberglass-reinforced plastic by the centrifugal method. For these specimens the external strength tests were carried out by taking the core thickness consisting of polymer mortar and the fiberglass content per unit area as experimental variables to figure out the effect of variations of these variables influencing on flexural rigidity that is an important property for the composite pipe. Results of this study are believed to provide the basic data for more economical and practical design of MMA-modified fiberglass-reinforced plastic composite pipe.

  • PDF

Influence of tooth position within the field of view on the intensity of cone-beam computed tomographic imaging artifacts when assessing teeth restored with various intracanal materials

  • de Oliveira Pinto, Martina Gerlane;Melo, Saulo Leonardo Sousa;Cavalcanti, Yuri Wanderley;de Lima, Elisa Diniz;Bento, Patricia Meira;de Melo, Daniela Pita
    • Imaging Science in Dentistry
    • /
    • 제50권2호
    • /
    • pp.141-151
    • /
    • 2020
  • Purpose: This study aimed to quantify the influence of tooth position within the field-of-view (FOV) on cone-beam computed tomography (CBCT) imaging artifacts' intensity when assessing teeth restored with various intracanal materials. Materials and Methods: Seventy single-rooted teeth were divided into 7 groups (10 teeth per group): NiCr post (NC), AgPd post (AP), metal core fiberglass post (MCFG), fiberglass post (FG), anatomical fiberglass post (AFG), fiberglass post cemented with core build-up cement (FGCo), and anatomical fiberglass post cemented with core build-up cement (AFGCo). All posts were cemented using a regular dual-curing resin cement (Allcem), except FGCo and AFGCo which were cemented with a core build-up dual-curing resin cement (AllcemCore). Each tooth was scanned on a CS9000 in 5 positions within the FOV: a central position, anterior horizontal peripheral, peripheral superior, peripheral inferior, and posterior horizontal peripheral position. Hyperdense, hypodense, remaining teeth areas and ROI areas were quantitatively analyzed using ImageJ software. Results: Posterior horizontal peripheral position increased the intensity of artifacts on FGCo and AFGCo post groups (P<0.05), and specifically the hypodense artifact intensity on FG and AFG post groups (P<0.05). NC and AP groups presented greater intensity of artifacts than any other post groups(P<0.05). Conclusion: Artifact intensity increases in the presence of high atomic number materials and when the object is not centered within the FOV. The impact of positioning within the FOV on artifact was greater for fiberglass posts cemented with core build-up dual-curing cement than for metal posts and fiberglass posts cemented with regular dual-curing cement.

VARTM (Vacuum Assisted Resin Transfer Molding) 방법에 의해 목재 및 파티클보드를 유리섬유로 보강한 복합소재의 성질 (Properties of Composites Reinforced with Fiberglass to Wood and Particleboard Using VARTM (Vacuum Assisted Resin Transfer Molding) Fabrication Process)

  • 차재경;이성우
    • Journal of the Korean Wood Science and Technology
    • /
    • 제35권3호
    • /
    • pp.29-35
    • /
    • 2007
  • 본 연구는 목재 및 파티클보드의 기계적 성질들을 향상시키기 위해 유리섬유를 VARTM 방법에 의해 보강한 복합소재에 대해 조사하였다. 시편들은 상업용 파티클보드 및 간벌소경재로 생산된 목재로 제작하였다. 시편들은 대조구(control)와 유리섬유로 보강된 목재/파티클보드 사이의 변이를 줄이기 위해 제재목과 파티클보드를 각각 길이 방향으로 둘로 잘라 한쪽은 대조구 시편으로 사용했고, 다른 한쪽은 한 층의 단축방향으로 짠 유리섬유 조방사로 시편의 양면을 보강하였다. 목재 및 파티클보드를 VARTM 방법에 의해 유리섬유로 보강한 복합소재는 기계적인 성질들이 크게 향상되었다.

Nonlinear forced vibrations of multi-scale epoxy/CNT/fiberglass truncated conical shells and annular plates via 3D Mori-Tanaka scheme

  • Mirjavadi, Seyed Sajad;Forsat, Masoud;Barati, Mohammad Reza;Hamouda, AMS
    • Steel and Composite Structures
    • /
    • 제35권6호
    • /
    • pp.765-777
    • /
    • 2020
  • In the context of classic conical shell formulation, nonlinear forced vibration analysis of truncated conical shells and annular plates made of multi-scale epoxy/CNT/fiberglass composites has been presented. The composite material is reinforced by carbon nanotube (CNT) and also fiberglass for which the material properties are defined according to a 3D Mori-Tanaka micromechanical scheme. By utilizing the Jacobi elliptic functions, the frequency-deflection curves of truncated conical shells and annular plates related to their forced vibrations have been derived. The main focus is to study the influences of CNT amount, fiberglass volume, open angle, fiber angle, truncated distance and force magnitude on forced vibrational behaviors of multi-scale truncated conical shells and annular plates.

유리섬유로 보강된 제재목의 기계적 성질에 대한 연구 (Study on the Mechanical Properties of Lumber Reinforced with Glass-Fiber)

  • 차재경
    • 한국가구학회지
    • /
    • 제20권4호
    • /
    • pp.281-289
    • /
    • 2009
  • This research examined the technical feasibility of composite that had two layers of fiberglass reinforcement to enhance the load carrying capacity of lumber. Specimens were prepared from standard lumber made of thinning crop trees such as Larix kaempferi, Pinus koraiensis, and P. rigida. Results indicated that bending properties, hardness, and wood screw withdrawal load of low density lumber from the P. koraiensis increased as the number of layers of fiberglass reinforcement increased. Composite produced by VARTM method showed the MOE increased in all specimens, while the MOR differed on the location, whether the 2-layers of FRP is put on tensile zone or compressive zone. The MOR of high density lumber from Larix kaempferi and P. rigida decreased when they placed into tensile zone, but low density lumber from P. koraiensis increased in same location. The bending toughness only increased high density lumber of Larix kaempferi as the number of layers of fiberglass reinforcement increased. The technique developed by this study may increase an opportunity to use small diameter log with low density for commercial purposes.

  • PDF