• Title/Summary/Keyword: fiber-reinforced lightweight concrete

Search Result 35, Processing Time 0.024 seconds

Bond behavior of PP fiber-reinforced cinder concrete after fire exposure

  • Cai, Bin;Wu, Ansheng;Fu, Feng
    • Computers and Concrete
    • /
    • v.26 no.2
    • /
    • pp.115-125
    • /
    • 2020
  • To reduce the damage of concrete in fire, a new type of lightweight cinder aggregate concrete was developed due to the excellent fire resistance of cinder. To further enhance its fire resistance, Polypropylene (PP) Fibers which can enhance the fire resistance of concrete were also used in this type of concrete. However, the bond behavior of this new type of concrete after fire exposure is still unknown. To investigate its bond behavior, 185 specimens were heated up to 22, 200, 400, 600 or 800℃ for 2 h duration respectively, which is followed by subsequent compressive and tensile tests at room temperature. The concrete-rebar bond strength of C30 PP fiber-reinforced cinder concrete was subsequently investigated through pull-out tests after fire exposure. The microstructures of the PP fiber-reinforced cinder concrete and the status of the PP fibre at different temperature were inspected using an advanced scanning electron microscopy, aiming to understand the mechanism of the bonding deterioration under high temperature. The effects of rebar diameter and bond length on the bond strength of PP fiber-reinforced cinder concrete were investigated based on the test results. The bond-slip relation of PP fiber-reinforced cinder concrete after exposure at different temperature was derived based on the test results.

A Fundamental Study for the Behavior of Lightweight Aggregate Concrete Slab Reinforced with GFRP Bar (GFRP bar를 휨보강근으로 사용한 경량골재콘크리트 슬래브의 거동에 관한 기초적 연구)

  • Jeon, Sang Hun;Shon, Byung Lak;Kim, Chung Ho;Jang, Heui Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.3
    • /
    • pp.99-108
    • /
    • 2012
  • In this paper, to intend anticorrosive effect and weight reduction of conventional reinforced concrete slab, lightweight concrete slab reinforced with glass fiber reinforced polymer(GFRP) bar was considered and some basic behaviour of the slab were investigated. Measurement of splitting tensile strength and fracture energy of the concrete, a number of flexural experiment of the slab, numerical analysis using nonlinear finite element analysis, and comparison of the experimental results to the numerical analysis, were conducted. As a result, even the weight of the lightweight concrete slab could be reduced by about 28% than the normal concrete slab, failure load of the lightweight concrete slab was 36% smaller than the normal concrete slab. Such a thing can be attributed to the lower axial stiffness and lower bond strength of GFRP bar. In the numerical analysis, to consider decreasing property of bond strength of the lightweight concrete, interface element was used between the concrete and the GFRP bar elements and this method was shown to be a better way for the numerical analysis to approach the experimental results.

FE Analysis of RC Beams Strengthened with Carbon Fiber Sheet (탄소섬유쉬트로 보강된 RC 보의 유한요소해석)

  • 한상호;이경동
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.1
    • /
    • pp.53-58
    • /
    • 2003
  • Carbon fiber sheet has been used to rehabilitate many types of reinforced concrete members with its superior characteristics such as their lightweight, high strength, corrosion resistance, and easy execution. But the failure behavior of reinforced concrete members show a high variation by the bond characteristics between carbon fiber sheet and concrete surface. In this study, a bond stress-slip model, which accounts for changes in bonding behavior between concrete and carbon fiber sheet with some link elements, is proposed. The link elements are used to represent the concrete-carbon fiber sheet interface. To investigate the efficiency of this method, the analytical solutions for the behavior of reinforced concrete beam strengthened with carbon fiber sheet are compared with experimental ones. Results from the proposed model comparatively well agree with the experimental results.

Effect of Volume Fraction of Fibers on the Mechanical Properties of a Lightweight Aggregate Concrete Reinforced with Polypropylene Fibers (섬유 혼입률에 따른 섬유보강 경량골재 콘크리트의 역학적 특성)

  • Lee, Haeng-Ki;Song, Su-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.6 s.96
    • /
    • pp.743-748
    • /
    • 2006
  • This paper presents results of an experimental study conducted to investigate the effect of volume fraction of fibers on the mechanical properties of a fiber-reinforced, lightweight aggregate concrete(FRLAC) that was produced without an autoclave process. The FRLAC enhanced the strength of lightweight, cellular concrete by adding polypropylene fibers and lightweight aggregates. To investigate the effect of volume fraction of fibers on the mechanical behavior of FRLAC and to determine the optimal volume fraction of fibers, a series of compression and flexural strength tests on FRLAC specimens with various fiber volume fractions(0%, 0.10%, 0.25%, 0.50%) were conducted. It was observed from the tests that a 0.25% volume fraction of fibers maximized the increase in the strength of FRLAC and the fibers controlled cracking in FRLAC.

Lightweight Floor Systems for Tall Buildings: A Comparative Analysis of Structural Material Efficiencies

  • Piyush Khairnar
    • International Journal of High-Rise Buildings
    • /
    • v.12 no.2
    • /
    • pp.145-152
    • /
    • 2023
  • Typical floor systems in contemporary tall buildings consist of reinforced concrete or composite metal deck over framing members and account for a majority of the structural weight of the building. The use of high-density materials, such as reinforced concrete and steel, increases the weight of floor systems, reducing the system's overall efficiency. With the introduction of high-performance materials, mainly mass timber products, and fiber-reinforced composites, in the construction industry, designers and engineers have multiple options to choose from when selecting structural materials. This paper discusses the application of mass timber and carbon fiber composites as structural materials in floor systems of tall buildings. The research focused on a comparative analysis of the structural system efficiency for five different design options for tall building floor systems. Finite Element Analysis (FEA) method was adopted to develop a simulation framework, and parametric structural models were simulated to evaluate the structural performance under specific loading conditions. Simulation results revealed the advantages of lightweight structural materials to improve system efficiency and reduce material consumption. The impact of mechanical properties of materials, loading conditions, and issues related to fire engineering and construction were briefly discussed, and future research topics were identified in conclusion.

Experimental Study on the Development and Application of High-Performance Composite Utilizing Industrial Wasts Products for Construction Works -Carbon Fiber Reinforced Fly Ash.Cement Composites- (산업폐기물을 이용한 건재용 고성능복합체의 개발 및 응용에 관한 실험적 연구 -탄소섬유 보강 플라이애쉬.시멘트 복합체-)

  • 박승범;이보성;윤의식
    • Magazine of the Korea Concrete Institute
    • /
    • v.3 no.3
    • /
    • pp.101-110
    • /
    • 1991
  • Results of an experimental study on the manufacture, the mechanical properties and watertightness of pitch - based carbon fiber reinforced fly ash. cement composites are presented in this paper. The carbon fiber reinforced fly ash. cement composites using early strength cement silica powder and a small amount of stylene butadiene rubber latex are prepared with carbon fiber, foaming agents and mixing conditions. As a result, the mechanical and physical properties such as compressive , tensile and flexural strengths, watertightness and drying shrinkage of lightweight carbon fiber reinforced fly ash cement composites are Improved by using a samll amount of stylene butadiene rubber latex. Also, the manufacturing pnx:ess technology of carbon fiber reinforced fly ash . cement composItes is developed. The development and applications of precast products of lightweight carbon fiber remforced cement composites are expected in the near future.

Experimental Study on the Engineering Properties of Carbon Fiber Reinforced Cement Composites (탄소섬유 보강 시멘트 복합체의 공학적 특성에 관한 실험적 연구)

  • 박승범
    • Magazine of the Korea Concrete Institute
    • /
    • v.1 no.1
    • /
    • pp.95-104
    • /
    • 1989
  • In order to discuss the engineering properties of carbon fiber reinforced cement composites with silica fume and silica powder, experimental studies on the CFRC were carried out. The types of fiber used which are in CFRC are PAN-based carbon fiber and Pitch-based carbon fiber. To examine the effects of types, Lengths, contents of carbon fibers and matrices, their properties of fresh and hardened CFRC were tested: According to the test results, the process technology of lightweight CFRC is developed and their optimum mix proportions are successfully proposed. Also, it can be conclueded that the reinforcement of carbon fiber is considerably effective in improving tensile strength, flexural strength, toughness and loss of shrinkage of CFRC compared with conventional mortar.

Effect of polypropylene and glass fiber on properties of lightweight concrete exposed to high temperature

  • Abdulnour Ali Jazem Ghanim;Mohamed Amin;Abdullah M. Zeyad;Bassam A. Tayeh;Ibrahim Saad Agwa;Yara Elsakhawy
    • Advances in concrete construction
    • /
    • v.15 no.3
    • /
    • pp.179-190
    • /
    • 2023
  • The effect of glass fibres (GF) and polypropylene fibres (PPF) on the fresh properties and mechanical properties of lightweight concrete (LWC) exposed to high temperatures is investigated in this study. In this study, fifteen LWC mixtures were carried out in three different groups reinforced with PPF or GF fibers by 0%, 0.2%, and 0.4% by volume of concrete. The first group included aluminum powder (AP) as an air agent at 0.03% with the normal weight coarse aggregate (NWCA) by 100% of the weight of coarse aggregate. In the second group, 33% of the NWCA weight was replaced by lightweight coarse aggregate (LWCA). In the third group, 67% of the NWCA weight was replaced by LWCA. The slump, unit weight, Compressive strength (CS), tensile strength (TS), and flexural strength (FS) were examined. For two hours, the CS and FS were subjected to elevated temperatures of 200℃, 400℃, and 600℃, in addition to microstructure analysis of concrete. In comparison to the reference mixture, the fresh properties and bulk density of LWC decreased with the use of the air agent or the replacement of 67% of the NWCA with LWCA. As a result of the fiber addition, both the slump test and the bulk density decreased. The addition of fibers increased the CS; the highest CS was 38.5 MPa when 0.4% GF was added, compared to 28.9 MPa for the reference mixture at the test age of 28 days. In addition, flexural and TS increased by 53% and 38%, respectively, for 0.4% GF mixes. As well as, adding 0.4% GF to LWC maintained a higher CS than other mixtures.

Verification of Parameters Influencing Bond Strength between Fiber-Reinforced Polymer Laminates and Concrete (연속섬유(FRP)시트와 콘크리트의 부착강도 영향 요인 검증)

  • Ko, Hune-Bum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.414-423
    • /
    • 2020
  • Fiber-reinforced polymer (FRP) laminate sheets, which are lightweight with high strength, are commonly used to reinforce concrete structures. The bonding strength is vital in structural design. Therefore, experiments and analytical studies with differing variables (concrete compressive strength and tensile strength, the elastic modulus of concrete and FRP, thickness of concrete and FRP, width of concrete and FRP, bond length, effective bond length, fracture energy, maximum bond stress, maximum slip) have been conducted to obtain an accurate numerical model of the bond strength between an FRP sheet and concrete. Although many models have been proposed, no validated model has emerged that could be used easily in practice. Therefore, this study analyzed the parameters that influence the bond strength that were used in 23 of the proposed models (Khalifa model, Iso model, Maeda model, Chen model, etc.) and compared them to the test results of 188 specimens via the numerical results of each model. As a result, an easy-to-use practical model with a simple and high degree of expression was proposed based on the Iso model combined with the effective bond length model that was proposed by Holzenkӓmpfer.

Tailoring ECC for Special Attributes: A Review

  • Li, Victor C.
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.3
    • /
    • pp.135-144
    • /
    • 2012
  • This article reviews the tailoring of engineered cementitious composites (ECC), a type of high performance fiber reinforced cementitious composites with a theoretical design basis, for special attributes or functions. The design basis, a set of analytic tools built on micromechanics, provides guidelines for tailoring of fiber, matrix, and fiber/matrix interfaces to attain tensile ductility in ECC. If conditions for controlled multiple cracking are disturbed by the need to introduce ingredients to attain a special attribute or function, micromechanics then serve as a systematic and rational means to efficiently recover composite tensile ductility. Three examples of ECCs with attributes of lightweight, high early strength, and self-healing functions, are used to illustrate these tailoring concepts. The fundamental approach, however, is broadly applicable to a wide variety of ECCs designed for targeted fresh and/or hardened characteristics required for specific applications.