• 제목/요약/키워드: fiber-optic biosensor

검색결과 16건 처리시간 0.023초

리스테리아 식중독균 검출을 위한 광학식 바이오센서 개발 (Development of a Fiber-Optic Biosensor for the Detection of Listeria monocytogenes)

  • 김기영;최규홍
    • Journal of Biosystems Engineering
    • /
    • 제31권2호
    • /
    • pp.128-134
    • /
    • 2006
  • Frequent outbreaks of foodborne illness demand the need for rapid and sensitive methods for detection of these pathogens. Recent development of biosensor technology has a great potential to meet the need for rapid and sensitive pathogens detection from foods. An antibody-based fiber-optic biosensor and an automated reagents supply system to detect Listeria monocytogenes were developed. The biosensor for detection of Listeria monocytogenes in PBS and bacteria spiked food samples was evaluated. The automated reagents supply system eliminated cumbersome sample and detection antibody injection procedures that had been done manually. The biosensor could detect $10^4$ cfu/ml of Listeria monocytogenes in PBS. By using the fiber-optic biosensor, $2x10^8$ cfu/ml of Listeria monocytogenes in the food samples were detectable.

An Automated Fiber-optic Biosensor Based Binding Inhibition Assay for the Detection of Listeria Monocytogenes

  • Kim, Gi-Young;Morgan, Mark;Ess, Daniel;Hahm, Byoung-Kwon;Kothapalli, Aparna;Bhunia, Arun
    • Food Science and Biotechnology
    • /
    • 제16권3호
    • /
    • pp.337-342
    • /
    • 2007
  • Conventional methods for pathogen detection and identification are labor-intensive and take days to complete. Biosensors have shown great potential for the rapid detection of foodborne pathogens. Fiber-optic biosensors have been used to rapidly detect pathogens because they can be very sensitive and are simple to operate. However, many fiber-optic biosensors rely on manual sensor handling and the sandwich assay, which require more effort and are less sensitive. To increase the simplicity of operation and detection sensitivity, a binding inhibition assay method for detecting Listeria monocytogenes in food samples was developed using an automated, fiber-optic-based immunosensor: RAPTOR (Research International, Monroe, WA, USA). For the assay, fiber-optic biosensors were developed by the immobilization of Listeria antibodies on polystyrene fiber waveguides through a biotin-avidin reaction. Developed fiber-optic biosensors were incorporated into the RAPTOR to evaluate the detection of L. monocytogenes in frankfurter samples. The binding inhibition method combined with RAPTOR was sensitive enough to detect L. monocytogenes ($5.4{\times}10^7\;CFU/mL$) in a frankfurter sample.

혈액중 포도당과 젖산의 분석을 위한 광섬유 생물센서 (Fiber-optic biosensor for analysis of glucose and lactate in blood samples)

  • 손옥재;이종일
    • 센서학회지
    • /
    • 제15권1호
    • /
    • pp.28-33
    • /
    • 2006
  • Optical-fiber sensors have been developed to determine the concentrations of glucose and lactic acid in blood samples. Fluorescence dye [tris(2,2'-biphenyridine)-ruthenium(II)-chloride (RuBPY)] was entrapped by using a silicon to the unclad tip of a glass optic fiber. Enzymes like glucose oxidase (GOD) and lactate oxidase (LOD) have been immobilized by acrylamide resin adhesive, adsorption with zeolite or covalent bonding with aminopropyl-triethoxysilan. The fiber-optic glucose/lactate sensor was then used to analyze the concentrations of glucose and lactate in blood samples. The results were compared with the results of HPLC analysis and their difference was in error by less then 5 %.

유기인화합물 측정용 광바이오센서 개발 (Development of Prototype Biosensor for The Detection of Organophosporus Compounds)

  • 최정우;김종민;이원홍;김영기
    • KSBB Journal
    • /
    • 제17권2호
    • /
    • pp.158-161
    • /
    • 2002
  • 본 연구에서는 화학무기, 농약 등에 사용되는 신경독성물질인 유기인화합물의 측정을 위하여 유기인화합물의 효소반응 저해작용을 이용한 광바이오센서장치의 시제품을 제작하였다. 효소반응을 위하여 효소로는 신경세포의 필수효소인 acetylcholinesterase, acetylthiocholine iodide을 사용하였으며 효소반응의 저해제인 유기인화합물로는 paraoxon을 사용하였다. 센서의 폭정원리는 유기인화합물에 의해 저해된 효소반응정도를 효소반응의 생성물인 아세트산의 정량적 측정으로 분석하였으며, pH에 의하여 최대 흡광파장의 변화가 일어나는 litmus를 사용하여 흡광도 측정으로 아세트산의 정량분석을 수행하였다. 광바이오센서 시제품의 제작은 광원으로 고취도 LED와 광세기 측정을 위한 photodiode로 구성하였으며, 제작된 센서를 이용한 실험결과로부터 0 ppm에서 2 ppm의 paraoxon 농도에서 구성된 센서시스템의 선형적 신호 변화를 관찰하였다. 이상의 실헐결과로부터 광바이오센서 시제품은 2분의 반응시간으로 신속하고 정확한 유기인화합물의 정량분석이 가능함을 확인하였다.

생물공정 모니터링을 위한 Fiber Optic 생물센서 개발

  • 손옥재;이종일
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2001년도 추계학술발표대회
    • /
    • pp.819-822
    • /
    • 2001
  • In this study a fiber optic biosensor has been developed to on-line monitor the concentrations of oxygen and glucose. The oxygen concentrations in solution and gas phase monitored by the fiber optic sensor has been compared with those by a dissolved oxygen electrode and an IR-type $O_2$ analyzer. The fiber optic glucose sensor has been made by immobilizing glucose oxidase on the tip of the optic fiber and used to on-line monitor the concentration of glucose in a fermentation process.

  • PDF

Toluene-o-monooxygenase와 Fluoresceinamine을 이용한 Trichloroethene와 Tetrachloroethene 감지용 광섬유 바이오센서의 특성 (Characteristics of Trichloroethene and Tetrachloroethene Sensing Optical Fiber Biosensor Using Toluene-o-monooxygenase and Fluoresceinamine)

  • 류두현
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제23권4호
    • /
    • pp.42-47
    • /
    • 2018
  • E. coli TG1 pBS TOM Green was cultured to produce toluene-o-monooxygenase (TOM). A biosensor system was successfully constructed using purified TOM to effectively detect trichloroethene (TCE) and tetrachloroethene (PCE), which represent some of the major contaminants in groundwater and soil. In order to utilize TOM as a sensor, NADH, a biological oxidizer, was replaced with hydrogen peroxide which is a chemical oxidizing agent. A three-layered sandwich-type sensing tip was fabricated on the outside of the hydrophilic polyvinylidene fluoride membrane. TCE and PCE were applied to the sensor and the hydrogen ions were measured by a fiber optic fluorometer using fluoresceinamine. Calibration curves were obtained for TCE and PCE in the concentration range of 0.2-100 mg/l, and the detection limit of the system was $10{\mu}g/l$ for TCE and PCE.

Review on Biosensors for Food Safety

  • Kim, Giyoung;Moon, Ji-Hea;Lim, Jongguk;Mo, Changyeun
    • Journal of Biosystems Engineering
    • /
    • 제39권2호
    • /
    • pp.115-121
    • /
    • 2014
  • Background: Frequent outbreaks of foodborne illness have been increased awareness of food safety. CDC estimates that each year roughly 48 million people gets sick, 128,000 are hospitalized and 3,000 die of foodborne diseases in US. In Korea, 6,058 were hospitalized and 266 incidents were reported in 2012. It is required to develop rapid methods to identify hazard substances in food products for protecting and maintaining safety of the public health. However, conventional methods for pathogens detection and identification involve prolonged multiple enrichment steps. Purpose: This review aims to provide information on biosensors to detect pathogens in food products to enhance food safety. Results: Foodborne outbreaks continue to occur and outbreaks from various food sources have increased the need for simple, rapid, and sensitive methods to detect foodborne pathogens. Conventional methods for foodborne pathogens detection require tremendous amount of labor and time. Biosensors have drawn attentions in recent years because of their ability to detect analytes sensitively and rapidly. Principles along with their advantages and disadvantages of a variety of food safety biosensors including fiber optic biosensor, impedimetric biosensor, surface Plasmon resonance biosensor, and nano biosensor were explained. Also, future trends for the food safety biosensors were discussed.

광섬유 생물센서에 의한 혈액 중 포도당 및 젖산 모니터링

  • 손옥재;김진희;임용식;서국화;정상윤;이종일
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2003년도 생물공학의 동향(XII)
    • /
    • pp.627-629
    • /
    • 2003
  • In this work fiber-optic biosensor that has been used in medical applications was developed. And we can monitored the concentration of glucose and lactate in blood sample by using developed fiber-optic glucose and lactate sensor. Glucose oxidase(GOD) and Lactate oxidase(LOD) were immobilized by using acrylamide adhesive and zeolite on the tip of the optic fiber.

  • PDF

Shuffled toluene-o-xylene monooxygenase를 이용한 TCE 측정용 fluorescence biosensor

  • 류두현;김용미;목지예;최상일
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 추계학술발표회
    • /
    • pp.475-478
    • /
    • 2003
  • A sol-gel fiber-optic biosensor with encapsulated pH-sensitive fluorophore and immobilized genetically modified toluene-o-xylene monooxygenase was developed to detect TCE, which is carcinogenic chlorinate organic compounds prevailing in ground water. The sensitivity was characterized for the composition of sol-gel, and manufacturing procedure.

  • PDF

TCE, PCE 측정을 위한 바이오센서의 특성

  • 류두현;김용미;최상일
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 총회 및 춘계학술발표회
    • /
    • pp.388-391
    • /
    • 2004
  • A sol-gel fiber-optic biosensor with encapsulated pH-sensitive fluorophore and immobilized genetically modified toluene-o-xylene monooxygenase was developed to detect TCE and PCE, which are carcinogenic chlorinate organic compounds prevailing in ground water. The sensitivity was characterized for the composition of sol-gel, and manufacturing procedure. The intensity curve reveals a linear range of intensity for pollutant concentration range of 0.01ppm and 1ppm. The change in intensity was appeared to be larger at each of L for same condition, and, therefore, the wavelength of λ was chosen for the analytical measurement.

  • PDF