• Title/Summary/Keyword: fiber strength

Search Result 4,095, Processing Time 0.035 seconds

Impact of nanocomposite material to counter injury in physical sport in the tennis racket

  • Hao Jin;Bo Zhang;Xiaojing Duan
    • Advances in nano research
    • /
    • v.14 no.5
    • /
    • pp.435-442
    • /
    • 2023
  • Sports activities, including playing tennis, are popular with many people. As this industry has become more professionalized, investors and those involved in sports are sure to pay attention to any tool that improves athletes' performance Tennis requires perfect coordination between hands, eyes, and the whole body. Consequently, to perform long-term sports, athletes must have enough muscle strength, flexibility, and endurance. Tennis rackets with new frames were manufactured because tennis players' performance depends on their rackets. These rackets are distinguished by their lighter weight. Composite rackets are available in many types, most of which are made from the latest composite materials. During physical exercise with a tennis racket, nanocomposite materials have a significant effect on reducing injuries. Materials as strong as graphite and thermoplastic can be used to produce these composites that include both fiber and filament. Polyamide is a thermoplastic typically used in composites as a matrix. In today's manufacturing process, materials are made more flexible, structurally more vital, and lighter. This paper discusses the production, testing, and structural analysis of a new polyamide/Multi-walled carbon nanotube nanocomposite. This polyamide can be a suitable substitute for other composite materials in the tennis racket frame. By compression polymerization, polyamide was synthesized. The functionalization of Multi-walled carbon nanotube (MWCNT) was achieved using sulfuric acid and nitric acid, followed by ultrasonic preparation of nanocomposite materials with weight percentages of 5, 10, and 15. Fourier transform infrared (FTIR) and Nuclear magnetic resonance (NMR) confirmed a synthesized nanocomposite structure. Nanocomposites were tested for thermal resistance using the simultaneous thermal analysis (DTA-TG) method. scanning electron microscopy (SEM) analysis was used to determine pores' size, structure, and surface area. An X-ray diffraction analysis (XRD) analysis was used to determine their amorphous nature.

Quality Characteristics and Storage Properties of Chiffon-cake Containing added Bamboo Leaf Powder (시폰케이크 제조 시 첨가한 대잎 분말이 케이크의 품질 및 보존성에 미치는 영향 연구)

  • Yoon, Ki-Hong;Kim, Mi-Kyung
    • Journal of the Korean Society of Food Culture
    • /
    • v.24 no.5
    • /
    • pp.552-560
    • /
    • 2009
  • Bamboo leaf powder was added to Chiffon cake to increase its neutraceutical effects and storage periods. Specifically, 0, 7, 10 and 13% leaf powder was added to the cakes. The content of total dietary fiber in the bamboo leaf powder was 65.57%. The moisture content did not differ significantly among groups. The cake containing 10% bamboo leaf powder had the greatest volume, whereas the control group (0% bamboo leaf powder) had the lowest volume (p<0.05). The Hunter's L and a values decreased significantly as the amount of bamboo leaf powder increased. The b value of the control was lowest among the groups (p<0.05). Evaluation of the consumer acceptance of flavor revealed that the cakes containing the added bamboo leaf had greater consumer acceptance than the control. However, when the color was evaluated, the 13% group showed the lowest acceptance (p<0.05). Other factors such as texture, taste and overall acceptance did not differ significantly among groups. Additionally, the elasticity did not differ among groups, while the air cells were most uniform in the control. The strength of bamboo leaf aroma, bitter taste and aftertaste increased as the amount of bamboo leaf powder added increased. Cakes containing 10% and 13% added powder had the greatest moisture content, while the control had the lowest content (p<0.05). As in previous studies, the results of this study indicated that 10% bamboo leaf powder was the optimal level for the preparation of Chiffon cake. To evaluate the storage of cakes, the 10% group and the control were inoculated with Aspergillus oryzae and then incubated at $30^{\circ}C$ for 6 days. The microbial colony counts in the control group were dramatically increased after 48 hrs; however, the fungal concentration of the 10% group did not increase for 4 days. In conclusion, the addition of 10% bamboo leaf powder to Chiffon cake increased the storage time while maintaining adequate consumer acceptance.

A Study on the Quality Characteristics of Jeolpyun with Bamboo Leaf Powder (절편제조 시 첨가한 대잎 분말이 절편의 품질특성에 미치는 영향 연구)

  • Lee, Gyu-Hee;Kim, Mi-Kyung
    • Journal of the Korean Society of Food Culture
    • /
    • v.25 no.6
    • /
    • pp.770-778
    • /
    • 2010
  • Bamboo leaf powder was added to Jeolpyun to increase the neutraceutical effects and storage period. The bamboo leaf powder was added to rice flour at ratios of 0, 4, 6, 8, and 10% (w/w), and they were treated with aqueous malt extract to extend storage. The Jeolpyun was stored at $20^{\circ}C$ for 72 hr, and the physical and sensory characteristics were evaluated. As a result, the crude fat, crude protein, moisture, crude ash and total dietary fiber contents in bamboo leaf powder were 4.36, 11.29, 3.37, 7.33, and 65.57%, respectively. The Hunters L, a, and b values decreased significantly as the amount of bamboo leaf powder increased; however, the a and b values increased during storage. The paste property setback values decreased with the malt extract treatment and with increasing amounts of bamboo leaf powder. In a sensory analysis, hard texture strength in the malt extract and bamboo leaf powder treatment groups was less than that in the control during storage. The Jeolpyun prepared with malt extract and no bamboo leaf powder was the most accepted by consumers. Although adding bamboo leaf powder resulted in less consumer acceptance except for the flavor attribute, adding 4% and 8% bamboo leaf powder resulted in better consumer acceptance for texture, taste, and overall acceptance than that of the control. In a microbial analysis, adding bamboo leaf powder resulted in fewer mold colonies. In conclusion, adding 4% bamboo leaf powder and malt extract to Jeolpyun improved its storage properties.

Service and Ultimate Load Behavior of Bridge Deck Reinforced with GFRP Rebars (GFRP 보강근으로 보강된 교량 바닥판의 성능과 사용성에 관한 실험연구)

  • Yu, Young Jun;Park, Young Hwan;Park, Ji Sun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5A
    • /
    • pp.719-727
    • /
    • 2008
  • The tensile and bond performance of GFRP rebar are different from those of conventional steel reinforcement. It requires some studies on concrete members reinforced with GFRP reinforcing bars to apply it to concrete structures. GFRP has some advantages such as high specific strength, low weight, non-corrosive nature, and disadvantage of larger deflection due to the lower modulus of elasticity than that of steel. Bridge deck is a preferred structure to apply FRP rebars due to the increase of flexural capacity by arching action. This paper focuses on the behavior of concrete bridge deck reinforced with newly developed GFRP rebars. A total of three real size bridge deck specimens were made and tested. Main variables are the type of reinforcing bar and reinforcement ratio. Static test was performed with the load of DB-24 level until failure. Test results were compared and analyzed with ultimate load, deflection behavior, crack pattern and width.

A Study of Static Behavior of FRP Bridge Deck Concerning Connection Condition (FRP바닥판의 연결조건에 따른 정적거동 분석)

  • Yong, Hwan Sun;Hwang, Yoon Koog;Kyung, Kab Su;Park, Yong Chan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.597-604
    • /
    • 2006
  • Fiber Reinforced Polymer (FRP) is a relatively new material in the bridge construction. With high strength to weight ratios, excellent durability, and low life-cycle costs of FRP, FRP bridge decks can offer a low dead load, reduced maintenance, and long service life. Due to the lightweight of FRP, if existing concrete decks can be replaced with the FRP decks, the load carrying capacity of superstructure can be increased without strengthening of girders. In this study, we have conducted an experiment on 7 cases of connection conditions with steel girder by using bolts considering a rational and economical method of connection and compared with the results of FEM analysis. From the experimental result, if the bolts are strong enough to resist shear force between the FRP bridge deck and the steel girder, it will be structurally secure to use the zigzag method.

Developing Sustainable Inorganic Sound-Absorbing Panel Mixtures Using Industrial Waste (산업폐기물을 활용한 무기계 흡음 패널 개발 기초 연구)

  • Cheulkyu Lee;Seongwoo Gwon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.501-508
    • /
    • 2023
  • Addressing urban noise problems, this study develops eco-friendly, inorganic sound-absorbing panels, overcoming the limitations of traditional PMMA and cement-based panels. These conventional panels pose safety risks due to flammability and environmental concerns due to carbon emissions. Utilizing industrial waste, the research comprises two phases: initial tests for physical and performance characteristics (fluidity, density, compressive strength, sound absorption) and subsequent development of optimized panel mixtures. This approach aims to replace existing panels with sustainable, effective alternatives, significantly contributing to safer, environmentally responsible urban infrastructure. The findings of this study have implications for the sound panel market, offering novel solutions for noise control while aligning with environmental and safety standards.

A GMDH-based estimation model for axial load capacity of GFRP-RC circular columns

  • Mohammed Berradia;El Hadj Meziane;Ali Raza;Mohamed Hechmi El Ouni;Faisal Shabbir
    • Steel and Composite Structures
    • /
    • v.49 no.2
    • /
    • pp.161-180
    • /
    • 2023
  • In the previous research, the axial compressive capacity models for the glass fiber-reinforced polymer (GFRP)-reinforced circular concrete compression elements restrained with GFRP helix were put forward based on small and noisy datasets by considering a limited number of parameters portraying less accuracy. Consequently, it is important to recommend an accurate model based on a refined and large testing dataset that considers various parameters of such components. The core objective and novelty of the current research is to suggest a deep learning model for the axial compressive capacity of GFRP-reinforced circular concrete columns restrained with a GFRP helix utilizing various parameters of a large experimental dataset to give the maximum precision of the estimates. To achieve this aim, a test dataset of 61 GFRP-reinforced circular concrete columns restrained with a GFRP helix has been created from prior studies. An assessment of 15 diverse theoretical models is carried out utilizing different statistical coefficients over the created dataset. A novel model utilizing the group method of data handling (GMDH) has been put forward. The recommended model depicted good effectiveness over the created dataset by assuming the axial involvement of GFRP main bars and the confining effectiveness of transverse GFRP helix and depicted the maximum precision with MAE = 195.67, RMSE = 255.41, and R2 = 0.94 as associated with the previously recommended equations. The GMDH model also depicted good effectiveness for the normal distribution of estimates with only a 2.5% discrepancy from unity. The recommended model can accurately calculate the axial compressive capacity of FRP-reinforced concrete compression elements that can be considered for further analysis and design of such components in the field of structural engineering.

Structural Analysis of Concrete-filled FRP Tube Dowel Bar for Jointed Concrete Pavements (콘크리트 포장에서 FRP 튜브 다웰바의 역학적 특성 분석)

  • Park, Jun-Young;Lee, Jae-Hoon;Sohn, Dueck-Su
    • International Journal of Highway Engineering
    • /
    • v.13 no.3
    • /
    • pp.21-30
    • /
    • 2011
  • As well known, dowel bars are used to transfer traffic load acting on one edge to another edge of concrete slab in concrete pavement system. The dowel bars widely used in South Korea are round shape steel bar and they shows satisfactory performance under bending stress which is developed by repetitive traffic loading and environment loading. However, they are not invulnerable to erosion that may be caused by moisture from masonry joint or bottom of the pavement system. Especially, the erosion could rapidly progress with saline to prevent frost of snow in winter time. The problem under this circumstance is that the erosion not only drops strength of the steel dower bar but also comes with volume expansion of the steel dowel bar which can reduce load transferring efficiency of the steel dowel bar. To avoid this erosion problem in reasonable expenses, dowers bars with various materials are being developed. Fiber reinforced plastic(FRP) dower that is presented in this paper is suggested as an alternative of the steel dowel bar and it shows competitive resistance against erosion and tensile stress. The FRP dowel bar is developed in tube shape and is filled with high strength no shrinkage. Several slab thickness designs with the FRP dowel bars are performed by evaluating bearing stress between the dowel bar and concrete slab. To calculated the bearing stresses, theoretical formulation and finite element method(FEM) are utilized with material properties measured from laboratory tests. The results show that both FRP tube dowel bars with diameters of 32mm and 40mm satisfy bearing stress requirement for dowel bars. Also, with consideration that lean concrete is typical material to support concrete slab in South Korea, which means low load transfer efficiency and, therefore, low bearing stress, the FRP tube dowel bar can be used as a replacement of round shape steel bar.

The Effect of Occlusion on the Reorganization of Periodontal Fibers during Retention Periods after Tooth Movement in Rats (백서에서 치아이동 후 보정기간 동안 교합이 치주조직섬유의 재형성에 미치는 영향)

  • Jeong, Kweon-Heui;Park, Yeong-Joon;Lee, Ki-Heon;Hwang, Hyeon-Shik
    • The korean journal of orthodontics
    • /
    • v.33 no.2 s.97
    • /
    • pp.103-111
    • /
    • 2003
  • The Purpose of this study was to evaluate the effect of occlusion on the mechanical strength of periodontal fibers during retention periods after experimental tooth movement. In the Sprague-Dawley male rats weighing 200g or more, the ntraoral elastics were inserted into the both right and left interproximal space between upper first and second molars for tooth movement. kiter 4 days later, the left lower first, second, and third molars were extracted for differentiating the non-occlusal side from the occlusal side in the same mouth. At the same time the elastics were removed and then light cured resin was Placed in the space between upper first and second molars following undercut was made for retention bilaterally. From the beginning of retention, 7 rats were sacrificed at 0, 4, 8, 12, 16, 20 days respectively. For evaluating of magnitude on the mechanical strength of periodontal tissue, the maximal shear load of the upper first molars were measured bilateraly during extraction using Instron Universal Testing Machine. The results of this study were obtained as follows : 1. In the occlusal side, the maximal shear load was increased from no retention to retention 20 days group as time was going and statistically difference was shown from retention 12 days group (p<0.05). 2. In the non-occlusal side, the maximal shear load was increased slightly from no retention to 20 days group as time was going but there was no statistically difference (p>0.05). 3. The result compared with the maximal shear load between occlusal and nonocclusal side showed no statistically difference until retention 8 day group (p>0.05), but showed statistically difference from retention 12 day to 20day group (P<0.05). These results show that occlusion had an effect on mechanical strength of the periodontal fibers during retention periods after experimental tooth movement; therefore, it is suggested that occlusion should be considered while the retainer types and retention period are planned.

Studies of the Properties of Commercial Woods Grown in the Southern Part of Korea (한국산(韓國産) 유용목재(有用木材)의 기초재질(基礎材質)에 관(關)한 연구(硏究))

  • Chung, Byung-Jae;Lee, Jyung-Seuk;Kim, Yoon-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.3-19
    • /
    • 1978
  • Five species, Abies koreana Wilson (A. koreana), Castanopsis cuspidata var. Sieboldii Nakai (C. Cuspidata). Machilus thunbergii Sieb. et Zucc. (M. thunbergii), Styrax japonica (S. japonica), and Quercus acuta Thunberg(Q. acuta) growing in the southern part of Korea were selected for the investigation of wood properties. In order to evaluate the wood properties of these five species, anatomical, physical, mechanical, chemical and pulping characteristics were investigated. And this study also covered wood technological problems related to the drying, gluing, debarking, flooring, and wood workability so that these species might serve to the best advantage. The results obtained were summarized as follows: 1. The trunk of A. koreana with many knots was straight. However, the trunks of S. japonica and C. cuspidata were crooked. 2. A. koreana showed the longest and the widest ill the fiber morphology; 2.97mm in length, 39.3${\mu}$ in width. In general, fiber width of all the species investigated were greater than those of other Korean hardwoods. 3. The specific gravity of Q. acuta was 0.74${\pm}$0.03, and that of A.koreana was 0.34${\pm}$0.02. The range of specific gravity of the other species was 0.47-0.52. 4. The adsorption of water was propotioned inversely with the specific gravity, but the adsorption of humidity was proportioned with the specific gravity. In spite of their medium density, S. japonica showed the greatest adsorption, and M. thunbergii the least. The water adsorption of cross section was twice greater than that of lateral direction, and there was a slight difference in between the radial and the tangential direction. 5. Shrinkage for tested five species was ranged from 5.36 to 10.24% in tangential direction, and 2.83~6.13% in radial direction. Q. acuta recorded the greatest shrinkage rate, and A. koreana the least. The greater was the specific gravity, the larger was the shrinkage rate. 6. The mechanical properties of Q. acuta were similar to those of Quercus mongolica which grow in Kangwon-Do. Strength properties of C. cuspidata, M. thunbergii, A. koreana were equivalent to those of other Korean commercial woods with similar specific gravity, except S. japonica which showed slightly higher strength than that of other species with similar density. 7. Higher glue joint strength for urea and phenol adhesieves was recorded in the species of M. thunbergii and C. cuspidata, however, high-density species(Q. acuta) and even low-density species(A. koreana) did not show good joint strength. 8. The attractive figure of M. thunbergii in texture seemed to he appreciated for decoration. And the grain and texture of other species were proper for furniture and building materials. 9. All of the species except Q. acuta were considered good for wood workability. 10. The denser the specific gravity was, the longer the drying time took. However, severe drying defects were formed in M. thunbergii whose density was medium. 11. All the species were considered suitable for the flooring wood expect A. koreana whose density was light. 12. Pentosan component in all the species was great, and the amount of extractives in Q. acuta was worth noticing. 13. Yield in kraft pulp was above the level of economic pulp yield, i.e. 45% in all species. 14. Debarking was easy in the species of A. koreana and M. thunbergii, and debarking after being boiled in water was the most efficient in all species.

  • PDF