• Title/Summary/Keyword: fiber sensor

Search Result 1,227, Processing Time 0.025 seconds

Strain Analysis in the Skin and Core Layers of Cross-Ply Composite Laminates Using A-EFPI Optical Fiber Sensor (광섬유 A-EFPI 센서를 이용한 직교적층 복합재료의 표피층 및 내부층의 변형률 해석)

  • 우성충;박래영;최낙삼;권일범
    • Composites Research
    • /
    • v.17 no.5
    • /
    • pp.15-24
    • /
    • 2004
  • Longitudinal strains (${\varepsilon}_x$) of the core and skin layers in glass fiber reinforced plastic (GFRP) cross-ply composite laminates have been measured using the embedded optical fiber sensor of absolute extrinsic Fabry-Perot interferometer (A-EFPI). Transmission optical microscopy was used to investigate the damage behavior around the A-EFPI sensor. Foil-type strain gauges bonded on both the upper and lower surfaces were used for the measurement of the surface strains. It was shown that values of ${\varepsilon}_x$ in the interior of the skin layer and the core layer measured by embedded A-EFPI sensor were significantly higher than that of the specimen surface measured by strain gauges. The experimental results agreed well with those from finite element analysis on the basis of uniform stress model. Large strains in the core layer led to the occurrence of many transverse cracks which drastically reduced the strain at failure of optical fiber sensor embedded in the core layer.

Manufacturing of an FBG sensor imbedded small wind turbine blade (광섬유 격자센서 내장형 소형 풍력발전기 날개 제작)

  • Kim, Chang-Hwan;Yun, Jin-Young;Kim, Hyun-Gyu;Kim, Kwan-Soo;Paek, In-Su;Yoo, Neung-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.4
    • /
    • pp.1-8
    • /
    • 2012
  • A Fiber Bragg Grating (FBG) sensor imbedded small wind turbine blade was manufactured to experimentally investigate the feasibility to embed FBG sensors between layers of glass fiber to monitor dynamic strains of the wind turbine blade. The blade which is similar to a commercial 300 W wind turbine blade was manufactured with glass fiber as a reinforcement and epoxy resin as base material. A total of five FBG sensors including one temperature sensor were imbedded in the blade to sense mechanical strain and temperature. While manufacturing the blade, residual strain and temperature that occurred in the small wind turbine blade were monitored using the imbedded FBG sensor array. To examine the sensor performance, an impact test was carried out. The experimental results from the FBG sensors were close to those from electrical strain gages mounted on the blade root surface. The mode shapes of the blade were analyzed also using a commercial Ansys simulation with a model obtained from a three dimensional laser scanning of the blade.

Cure Monitoring of Epoxy Resin by Using Fiber Bragg Grating Sensor (광섬유 브래그 격자 센서를 이용한 에폭시 수지의 경화도 모니터링)

  • Lee, Jin-Hyuk;Kim, Dae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.3
    • /
    • pp.211-216
    • /
    • 2016
  • In several industrial fields, epoxy resin is widely used as an adhesive for co-curing and manufacturing various structures. Controlling the manufacturing process is required for ensuring robust bonding performance and the stability of the structures. A fiber optic sensor is suitable for the cure monitoring of epoxy resin owing to the thready shape of the sensor. In this paper, a fiber Bragg grating (FBG) sensor was applied for the cure monitoring of epoxy resin. Based on the experimental results, it was demonstrated that the FBG sensor can monitor the status of epoxy resin curing by measuring the strain caused by volume shrinkage and considering the compensation of temperature. In addition, two types of epoxy resin were used for the cure-monitoring; moreover, when compared to each other, it was found that the two types of epoxy had different cure-processes in terms of the change of strain during the curing. Therefore, the study proved that the FBG sensor is very profitable for the cure-monitoring of epoxy resin.

Development of Smart Soccer Socks Using a Textile Stretch Sensor -Focused on Middle School Girls between the Ages of 14 and 15- (텍스타일형 스트레치 센서를 이용한 스마트 축구 양말 개발 -14~15세 여중생을 중심으로-)

  • Kim, Ji-seon;Park, Jinhee;Kim, Jooyong
    • Journal of Fashion Business
    • /
    • v.24 no.3
    • /
    • pp.17-29
    • /
    • 2020
  • This study aimed to produce fiber stretch sensors for smart soccer socks to prevent injuries during training. A sensor was manufactured with stretchable fabric and tested to ensure convenience during training. In order to manufacture the fiber stretch sensor, a CNT dispersion solution was applied to an e-band and elastic polyester fabric, and the performance of the sensors was evaluated by a tensile test. Performance evaluation showed that both of the tested fabrics are excellent for this purpose. Both sensors were attached to socks to create prototype wearable devices, and an experiment was conducted to determine whether a resistance change accompanying relaxation and contraction of the gastrocnemius muscle could be detected. In order to accurately evaluate performance as a sensor, the fabric was stretched 20 times at low speeds of 1 Hz and 0.5 Hz. A change in resistance due to tension was observed, with both the E-band and the stretchable poly fabric showing high sensitivity and high reproducibility. Both can be used as relaxation/contraction sensors. Smart soccer socks were made using the two materials, and an evaluation was conducted. Tensile tests were done on the smart soccer socks; the tests were done 20 times per sock, and the sensor showed a stable resistance change between 30 and 40 ohms depending on the tension of the sensor. As a result, we confirmed that smart soccer socks with stretch sensors made of E-bands can measure changes in the gastrocnemius muscle.

Implementation of fiber-optic temperature sensor system base on optical absorption device (광흡수 소자를 이용한 광온도 센서 시스템의 구현)

  • 김영수;김요희
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.9
    • /
    • pp.128-134
    • /
    • 1995
  • A fiber-optic temperature sensor utilizing an optical absorption device (InP) was fabricated. The spectrum of transmitted light through an InP device was obtained at the three temperatures(249 K, 369 K). A stabilized LED(light emmiting diode) driver, photoreceiver, and signal proocessing electronics were designed. An intensity referencing technique was adopted in order to minimize the fluctuation of output signal due to external pertubation of the transmitting optical fiber. The optical absorption edge of the InP device moves to longer wavelength at a rate of 0.42 nm / K, and energy gap of InP is 1.35 eV at room temperature. From these results, it is concluded that the InP device has temperature dynamic range of 300 K with LED of center wavelength of 940nm and spectral width of 50nm. The designed fiber-optic temperature sensor system showed good linearity within the temperature range from -30$^{\circ}C$ to + 150$^{\circ}C$.

  • PDF

A Study on Characteristics of Sagnac Interferometric Optical Fiber Sensor to Pulsed Ultrasonic Signal in Underwater (수중에서 펄스초음파 신호에 대한 Sagnac 간섭형 광섬유센서의 특성 연구)

  • 이준호;신대용
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.1
    • /
    • pp.15-19
    • /
    • 2004
  • In this paper, we present the fabrication and characteristic analysis of Sagnac interferometric optical fiber senior(OFS) system for detecting pulsed ultrasonic signal in underwater. The hollow cylindrical mandrel wound round by single mode optical fiber is used as sensing component. The ultrasonic signal source is simulated by the PZT actuator operated by an function generator. The distance dependency of the OFS's sensitivity was measured. The sensitivity has been shown to be inversely propotional to the square-root of distance between ultrasonic source and sensing component. It has also been shown that the OFS could detect the signals less affected by ultrasonic path comparing to conventional acousto-electric sensor. and accurate location of ultrasonic signal could be carried out using two OFSs.

A Study on Ultrasonic Location in Underwater Using the Two Optical Fiber Sensors (수중에서 2개의 광섬유센서를 이용한 초음파 음원의 위치 검출에 관한 연구)

  • Kwon, Tae-Ho;Shin, Dae-Yong;Lee, June-Ho;Lee, Jong-Kil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.62-66
    • /
    • 2002
  • The preliminary results on the application of optical fiber sensor(OFS) for locations of ultrasonic signals in underwater are presented and analyzed. The OFS utilizing the principle of Sagnac interferometry was designed and the hollowed cylindrical mandrel wound by single mode optical fiber was used as sensing component. The ultrasonic signal source was simulated by the PZT actuator operated with function generator. It has been shown that the OFS could detect the signals less affected by ultrasonic path comparing to conventional acousto-electric sensor and accurate location of ultrasonic signal could be carried out using two OFSs.

  • PDF

Temperature Compensation of a Fiber Optic Strain Sensor Based on Brillouin Scattering

  • Cho, Seok-Beom;Lee, Jung-Ju;Kwon, Il-Bum
    • Journal of the Optical Society of Korea
    • /
    • v.8 no.4
    • /
    • pp.168-173
    • /
    • 2004
  • Brillouin scattering-based fiber optic sensors are useful to measure strain or temperature in a distributed manner. Since the Brillouin frequency of an optical fiber depends on both the strain and temperature, it is very important to know whether the Brillouin frequency shift is caused by the strain change or temperature change. This article presents a temperature compensation technique of a Brillouin scattering-based fiber optic strain sensor. Both the changes of the Brillouin frequency and the Brillouin gain power is observed for the temperature compensation using a BOTDA sensor system. Experimental results showed that the temperature compensated strain values were highly consistent with actual strain values.

Detection of Hydrogen Gas Dissolved in Insulation Oil Based on Palladium-coated Fiber Bragg Grating (팔라듐이 코팅된 광섬유 격자를 이용한 절연유속의 용존 수소가스 검출)

  • Kim, Kwang Taek;Choi, Nu ri;Baik, Se-Jong
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.403-406
    • /
    • 2018
  • We have investigated a fiber-optic sensor for detecting the hydrogen gas dissolved in insulation oil based on a palladium (Pd)-coated fiber Bragg grating (FBG). As the palladium absorbs the hydrogen gas dissolved in the insulation oil, its volume expands and the Bragg wavelength shifts to a longer wavelength. The experimental results showed that the Bragg wavelength of FBG increased to 70 nm when the concentration of hydrogen dissolved in the insulation oil was 409 ppm.

Current Sensor for Bus Bar based on Fiber Bragg Gratings (광섬유 브래그 격자를 이용한 부스바용 전류 센서)

  • Kwang Taek Kim;Gunpyo Kim
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.2
    • /
    • pp.72-75
    • /
    • 2023
  • In this paper, a fiber-optic current sensor for a bus bar conductor based on the fiber Bragg grating (FBG) is proposed and demonstrated experimentally. The metal bus bar and a magnet are connected to each other through an FBG and the Bragg wavelength of the FBG is changed by magnetic force between the two connected devices. The experimental results showed that the Bragg wavelength of an FBG shifted by 650 pm as the 500 A direct current was applied to the bus bar.