• 제목/요약/키워드: fiber scaffold

검색결과 36건 처리시간 0.03초

조직공학을 위한 생체모사용 스캐폴드 개발 (Development of Biomimetic Scaffold for Tissue Engineering)

  • 박수아;이준희;김완두
    • Elastomers and Composites
    • /
    • 제44권2호
    • /
    • pp.106-111
    • /
    • 2009
  • 조직공학은 기능을 상실한 인체를 대체하거나 복원하기 위해 인공대체품을 개발하기 위한 중요한 학문이다. 특히, 세포가 자랄 수 있는 지지체 역할을 하는 스캐폴드는 조직공학 연구를 위한 중요한 부분을 차지하고 있다. 그래서, 3차원 조직공학용 스캐폴드 개발을 위한 다양한 제조 방법을 소개하고자 하였다. 스캐폴드의 일반적인 제조방법으로는 염침출법 (solvent-casting particulate-leaching), 염 발포법 (gas foaming/salt leaching), fiber meshes/fiber bonding 법, 상분리법 (phase separation), melt moulding 법, 동결 건조법 (freeze drying)이 있으며, 넓은 표면적을 가진 스캐폴드 개발방법으로 전기방사법이 알려져 있다. 또한, 최근에는 스캐폴드 내부의 균일한 세포의 침투를 유도하기 위해 적당한 공극크기를 조절하고 우수한 공극률을 가진 스캐폴드를 개발하고자 stereolithography (SLA), selective laser sintering (SLS), fused deposition modeling (FDM), 및 3D printing (3DP) 와 같은 다양한 solid freeform fabrication (SFF) 기술이 개발되어지고 있다.

Poly(p-dioxanone) Scaffold의 In-Virto특성

  • 오주선;이세철;김종상;김학용;최선웅
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 1999년도 가을 한국섬유공학회 학술발표회 논문집(Proceedings of the Korean Textile Conference)
    • /
    • pp.395-398
    • /
    • 1999

Preparation of PHBV/Collagen Nanofibrous Mats and their Tissue Compatibility Compatibilscaffolds for tissue engineering

  • Meng, Wan;Kim, Se-Yong;Yuan, Jiang;Kim, Jung-Chul;Kwon, Oh-Hyeong;Ito, Yoshihiro;Kang, Inn-Kyu
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.50-51
    • /
    • 2006
  • The nanofibrous scaffolds were obtained by co-electrospinning PHBV and collagen Type I in HIFP. The resulting fiber diameters were in the range between 300 and 600 nm. The nanofiber surfaces were characterized by ATR-FTIR, ESCA and AFM. The PHBV and collagen components of the PHBV-Col nanofibrous scaffold were biodegraded by PHB depolymerase and a collagenase Type I aqueous solution, respectively. It was found, from the cell-culture experiment, that the PHBV-Col nanofibrous scaffold accelerated the adhesion of the NIH 3T3 cell compared to the PHBV nanofibrous scaffold, thus showing a good tissue engineering scaffold.

  • PDF

Acrylic Acid-Grafted Hydrophilic Electrospun Nanofibrous Poly(L-lactic acid) Scaffold

  • Park, Kwi-Deok;Jung, Hyun-Jung;Kim, Jae-Jin;Ahn, Kwang-Duk;Han, Dong-Keun;Ju, Young-Min
    • Macromolecular Research
    • /
    • 제14권5호
    • /
    • pp.552-558
    • /
    • 2006
  • Biodegradable nanofibrous poly(L-lactic acid) (PLLA) scaffold was prepared by an electrospinning process for use in tissue regeneration. The nanofiber scaffold was treated with oxygen plasma and then simultaneously in situ grafted with hydrophilic acrylic acid (AA) to obtain PLLA-g-PAA. The fiber diameter, pore size, and porosity of the electrospun nanofibrous PLLA scaffold were estimated as $250\sim750nm,\;\sim30{\mu}m$, and 95%, respectively. The ultimate tensile strength was 1.7 MPa and the percent elongation at break was 120%. Although the physical and mechanical properties of the PLLA-g-PAA scaffold were comparable to those of the PLLA control, a significantly lower contact angle and significantly higher ratio of oxygen to carbon were notable on the PLLA-g-PAA surface. After the fibroblasts were cultured for up to 6 days, cell adhesion and proliferation were much improved on the nanofibrous PLLA-g-PAA scaffold than on either PLLA film or unmodified nanofibrous PLLA scaffold. The present work demonstrated that the applications of plasma treatment and hydrophilic AA grafting were effective to modify the surface of electrospun nanofibrous polymer scaffolds and that the altered surface characteristics significantly improved cell adhesion and proliferation.

Fabrication and Characterization of BCP Nano Particle Loaded PCL Fiber and Their Biocompatibility

  • Nguyen, Thi-Phuong;Lee, Byong-Taek
    • 한국재료학회지
    • /
    • 제20권7호
    • /
    • pp.392-400
    • /
    • 2010
  • The electrospinning process was established as a promising method to fabricate nano and micro-textured scaffolds for tissue engineering applications. A BCP-loaded PCL micro-textured scaffold thus can be a viable option. The biocompatibility as well as the mechanical properties of such scaffold materials should be optimized for this purpose. In this study, a composite scaffold of poly ($\varepsilon$-caprolactone) (PCL)-biphase calcium phosphate (BCP) was successfully fabricated by electrospinning. EDS and XRD data show successful loading of BCP nano particles in the PCL fibers. Morphological characterization of fibers shows that with a higher loaded BCP content the fiber surface was rougher and the diameter was approximately 1 to 7 ${\mu}m$. Tensile modulus and ultimate tensile stress reached their highest values in the PCL- 10 wt% BCP composite. When content of nano ceramic particles was low, they were dispersed in the fibers as reinforcements for the polymer matrix. However, at a high content of ceramic particles, the particles tend to agglomerate and lead to decreasing tensile modulus and ultimate stress of the PCL-BCP composite mats. Therefore, the use of nano BCP content for distribution in fiber polymer using BCP for reinforcement is limited. Tensile strain decreased with increasing content of BCP loading. From in vitro study using MG-63 osteoblast cells and L-929 fibroblast like cells, it was confirmed that electrospun PCL-BCP composite mats were biocompatible and that spreading behavior was good. As BCP content increased, the area of cell spreading on the surface of the mats also increased. Cells showed the best adherence on the surface of composite mats at 50 wt% BCP for both L-929 fibroblast-like cells and MG-63 osteoblast cell. PCL- BCP composites are a promising material for application in bone scaffolds.

순수용매와 혼합용매를 이용한 상전이를 통한 Poly(L-lactide) 스캐폴드 막의 제조 (Fabrication of Poly(L-lactide) Scaffold Membranes through Phase Inversion with Pure and Mixed Solvents)

  • 김영경;조유송;구자경
    • 멤브레인
    • /
    • 제25권1호
    • /
    • pp.48-59
    • /
    • 2015
  • 순수용매와 혼합용매를 사용한 상전이를 통하여 poly(L-lactic acid) (PLLA) 스캐폴드 막을 제조하였다. 순수용매로서 chloroform과 1,4-dioxane을 사용하였으며, 이들 순수용매를 혼합하여 혼합용매를 제조하였다. 스캐폴드 막의 모폴로지, 기계적 특성 그리고, 물질전달 특성을 각각 SEM, 인장강도실험 및 당 확산실험을 통하여 측정, 평가하였다. 순수 chloroform 용매를 사용한 용액으로부터는 격벽-공극 구조(solid-wall pore structure)의 스캐폴드 막이 제조되었다. 반면, 순수 1,4-dioxane 용매를 사용한 용액으로부터는 나노섬유 구조의 스캐폴드 막이 제조되었다. 혼합용매의 경우 용매 내의 조성이 변화하면서 다양한 구조의 스캐폴드 막이 제조되었다. 혼합용매 내 1,4-dioxane 함량이 20% 이하인 경우에는 격벽-공극 구조의 스캐폴드 막이 제조되었으며, 1,4-dioxane 함량이 20%인 경우에는 최대직경 $100{\mu}m$의 거대공극을 갖는 구조를 보였다. 1,4-dioxane 함량이 25% 이상인 구간에서는 나노섬유 구조의 스캐폴드 막이 제조되었다. 이 구간에서는 혼합용매 내 1,4 dioxane 함량이 변화함에 따라 나노섬유의 직경이 함께 변화하였다. 나노섬유의 최소직경은 15 nm 가량이었으며, 혼합용매 내의 1,4-dioxane 함량이 80 wt%일 때에 얻어졌다. 이상의 결과를 통하여 용매의 조성은 스캐폴드 막의 구조를 결정짓는 중요한 요소가 된다는 결론을 얻을 수 있었다.

임의 형상 제작 기법을 이용한 3차원 세포지지체 제작에 관한 연구 (A Study on the Fabrication of 3D Scaffolds Using the Solid Freeform Method)

  • 최도현;김현철
    • 한국기계가공학회지
    • /
    • 제18권2호
    • /
    • pp.44-51
    • /
    • 2019
  • With the goal of tissue regeneration for organs damaged through an accident or a disease, research on tissue engineering has been conducted to produce 3-D scaffolds that can support the cells in the attachment and growth for the cell proliferation and differentiation. A scaffold requires a suitable pore size and porosity to increase the nutrient circulation or oxygen supply for the attachment and growth of cells. The existing production methods such as solvent-casting particulate leaching, phase separation, and fiber bonding have certain disadvantages. With these methods, it is difficult to obtain a free desired shape. In addition, certain pore sizes and interconnectivities among the pores may not be guaranteed. To solve these problems, this study has fabricated a scaffold with a 3-D shaped nose using Alginate, which is a natural polymer obtained through Fused Deposition Modeling (FDM), one of the CAD/CAM-based Solid Freeform Fabrication (SFF) methods.