• 제목/요약/키워드: fiber reinforced polymer FRP

검색결과 366건 처리시간 0.021초

Sprayed FRP 공법에 의한 콘크리트 구조물의 보수.보강법 개발에 관한 연구 - 철근콘크리트 전단기둥의 보강성능 평가 - (Repair and Strengthening Methods for Concrete Structures using Sprayed Fiber Reinforced Polymers - Strengthening performance of Reinforced Concrete Shear Columns -)

  • 이강석;변인희;손영선;이문성;이성호;이리형
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.137-140
    • /
    • 2006
  • In this study, a seismic performance of reinforced concrete columns strengthened by a sprayed fiber reinforced polymer (SFRP) is investigated. For this purpose, six column specimens approximately scaled into 2/3, are designed and tested under a constant axial load, 10% of the nominal axial strength of column, and pseudo-static reversed cyclic lateral loading system. Four specimens are strengthened by Sprayed FRP using different combinations of short fibers (carbon or glass fiber) and resins (epoxy or vinyl esther). For comparison, the test investigated in this study also includes a specimen strengthened using carbon fiber reinforced polymer (CFRP), and also a control specimen without strengthening. The results revealed that specimens strengthened using SFRP showed a improved structure behavior, compared to control specimen, in terms of strength, ductility, lateral drift capacity, and energy-absorbtion capacity. In addition, compared to the specimen strengthened using CFRP, Sprayed FRP-strengthened specimens reasonably showed a equivalent seismic performance.

  • PDF

Review of Anchorage Systems for Externally Bonded FRP Laminates

  • Grelle, Stephen V.;Sneed, Lesley H.
    • International Journal of Concrete Structures and Materials
    • /
    • 제7권1호
    • /
    • pp.17-33
    • /
    • 2013
  • The most recent report by ACI Committee 440 on externally bonded fiber reinforced polymer (FRP) strengthening systems states that systems designed to mechanically anchor FRP should be studied in detail and substantiated by physical testing. To select and design an appropriate anchorage system for use in an FRP strengthening system, it is important that findings from previous research studies be known. This paper presents a comprehensive literature review of the performance of different mechanical anchorage systems used in FRP strengthening applications. Each anchorage system is discussed in terms of its purpose and performance. Advantages and disadvantages of each system are discussed, and areas in need of future research are explored.

Glass FRP-Bonded RC Beams under Cyclic Loading

  • Tan, Kiang-Hwee;Saha, Mithun-Kumar
    • International Journal of Concrete Structures and Materials
    • /
    • 제1권1호
    • /
    • pp.45-55
    • /
    • 2007
  • Ten beams bonded with glass fiber reinforced polymer (GFRP) laminates were tested under cyclic loading with the load range and the FRP reinforcement ratio as test parameters. The maximum load level during cyclic loading was 55%, 65% and 75% of the static flexural strength while the minimum load level was kept constant at 35%. Deflections of the beams at the end of 525000 cycles were found to increase by 16% and 44% when the maximum load level was increased from 55% to 65% and 75% of the static flexural strength, respectively. Beams with FRP reinforcement ratios of 0.64% and 1.28% were found to exhibit lesser deflections of about 15% and 20%, respectively, compared to a similar beam without FRP reinforcement. An analytical approach based on cycle-dependent effective moduli of elasticity of concrete and FRP reinforcement is presented and found to predict the deflections of the test beams well.

Iterative neural network strategy for static model identification of an FRP deck

  • Kim, Dookie;Kim, Dong Hyawn;Cui, Jintao;Seo, Hyeong Yeol;Lee, Young Ho
    • Steel and Composite Structures
    • /
    • 제9권5호
    • /
    • pp.445-455
    • /
    • 2009
  • This study proposes a system identification technique for a fiber-reinforced polymer deck with neural networks. Neural networks are trained for system identification and the identified structure gives training data in return. This process is repeated until the identified parameters converge. Hence, the proposed algorithm is called an iterative neural network scheme. The proposed algorithm also relies on recent developments in the experimental design of the response surface method. The proposed strategy is verified with known systems and applied to a fiber-reinforced polymer bridge deck with experimental data.

FRP로 보강한 비보강 조적 벽체의 전단강도 산정 (Evaluation of Shear Strength of Unreinforced Masonry Walls Retrofitted by Fiber Reinforced Polymer Sheet)

  • 배백일;윤효진;최창식;최현기
    • 콘크리트학회논문집
    • /
    • 제24권3호
    • /
    • pp.305-313
    • /
    • 2012
  • 비보강 조적조 건축물은 전세계적으로 기존의 건물 및 역사 건축물의 많은 부분을 차지하고 있다. 특히, 최근 지진이 전세계적으로 빈번하게 나타남에 따라 비보강 조적조 구조물에 대한 내진 보강 대책이 요구되고 있다. 현재 비보강 조적조의 보강방법으로는 숏크리트, ECC jacketing, FRPs(fiber reinforced polymer sheet) 등이 개발되어 사용되고 있다. 특히 많은 엔지니어들이 FRPs를 사용한 보강방법을 채택하는 경향이 보이는데 이는 숏크리트나 ECC jacketing과는 달리 벽체의 두께 확장에 따른 구조물 자중 증가 문제없이 비보강 조적조의 전단강도를 향상시킬 수 있기 때문이다. 그러나 비보강 조적 벽체의 복잡한 역학적 거동과 FRPs를 사용한 실험 데이터의 부족은 아직까지도 적절한 보강량을 산정하는데 어려움을 주고 있다. 이 연구는 비보강 조적조의 면내 거동을 확인하고 두 가지의 다른 특징을 가진 FRPs를 사용한 보강 효과에 대한 정보를 주기 위해 수행되었다. 실험체는 1970년대 한국에서 빈번하게 지어진 저층형 연립주택의 내벽을 대상으로 하고 있으며 별도의 내진 설계는 되어있지 않은 상태이다. 실험체의 형상비는 실제 상황을 반영하기 위해 1에 가깝게 설정되어 있다. 보강 재료로는 탄소섬유보강 시트와 하이브리드 시트를 사용하였으며 이들은 각각 다른 극한 강도와 탄성계수 및 극한 변형률을 보유하고 있다. 연구 결과 비보강 조적 벽체의 면내 전단력 저항 성능을 확인하였으며 FRPs가 사용된 내진 보강 방안의 특성을 분석할 수 있었다. 또한 FRPs를 사용한 보의 전단보강 방법에 착안하여 비보강 조적조에 대한 FRPs의 보강 설계안을 도출할 수 있었다.

충전형 FRP 합성박스 모듈의 압축파괴 거동 분석 (Analysis of Compressive Fracture Behavior of Filled FRP Composite Box Module)

  • 김호선;장화섭;이호현;윤국현
    • 한국전산구조공학회논문집
    • /
    • 제25권1호
    • /
    • pp.1-8
    • /
    • 2012
  • 본 연구는 다양한 건설 구조물 중 휨 응력을 받는 부재인 슬래브, 거더 등에 FRP(Fiber Reinforced Polymer) 박스부재를 적용하기 위한 기초 실험적 연구이다. 조립이 가능한 FRP 부재를 제작하여 FRP 박스부재의 대형단면으로서의 연결 후 압축파괴 거동 특성을 분석하기 위하여 다양한 조건으로 실험을 수행하였다. FRP 박스부재의 상부에 충진재와 하중재하 방법 및 연결형태에 따른 압축파괴 거동 실험을 실시하였으며, 이를 이용하여 유한요소해석을 수행하였다. 해석결과를 실험결과와 비교한 결과 강성이 약간 낮게 조사되었으나 시험체의 파괴지점에 응력이 집중되는 것을 확인할 수 있었다.

Reinforced high-strength concrete square columns confined by aramid FRP jackets -part I: experimental study

  • Wang, Yuan-Feng;Ma, Yi-Shuo;Wu, Han-Liang
    • Steel and Composite Structures
    • /
    • 제11권6호
    • /
    • pp.455-468
    • /
    • 2011
  • Although retrofitting and strengthening reinforced concrete (RC) columns by wrapping fiber reinforced polymer (FRP) composites have become a popular technique in civil engineering, the study on reinforced high-strength concrete (HSC) columns is still not sufficient. The objective of these companion papers is to investigate the mechanical properties of reinforced HSC square columns confined by aramid FRP (AFRP) jackets under concentric compressive loading. In the part I of these companion papers, an experiment was conducted on 54 confined RC specimens and nine unconfined plain specimens, the considered parameters were the concrete strength, the thickness of AFRP jackets, and the form of AFRP wrapping. The experimental process and results are presented in detail. Subsequently, some discussions on the confinement effect, failure modes, strength, and ductility of the columns are carried out.

콘크리트내 표면매립보강된 FRP의 내화단열방법과 연단거리에 따른 온도변화 (Temperature Variation Corresponding to the Protection Method and Edge Distance in Near-Surface-Mounted FRP in Concrete with Fire Protection)

  • 임종욱;서수연
    • 대한건축학회논문집:구조계
    • /
    • 제35권11호
    • /
    • pp.137-146
    • /
    • 2019
  • Recently, the Near-Surface-Mounting method using Fiber reinforced polymer (FRP) has been developed and applied to the reinforcement of many concrete structural members. However, as a part of the fire resistance design, there is a lack of research related to fire insulation for the areas reinforced with FRP. In case of NSM reinforcement, there is a difference in the transferred temperature from the external surface to the groove corresponding to the location of the groove where the FRP is embedded, and the effect of this should be reflected in the fireproof insulation design. Therefore, in this study, after forming grooves for surface embedding in concrete blocks, fireproof insulation reinforcement was performed using Calcium Silicate (CS) fireproof board and an experiment to evaluate the temperature transfer was performed. By observing the temperature at these groove positions, the reduction of temperature transfer according to fireproof insulation detail was studied. As a result, when the NSM-FRP is properly fire-insulated using the CS-based fireproof board, the epoxy inside the groove does not reach its glass transition temperature until the external temperature reaches $800^{\circ}C$.

GFRP 보강 폴리머 모르터 3중복합관의 구조적 특성 (Structural Evaluation of Glass-fiber Reinforced 3-Layer Polymer Composite Pipe)

  • 연규석;권윤환;유근우;김남길
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2001년도 학술발표회 발표논문집
    • /
    • pp.147-151
    • /
    • 2001
  • This study was performed to evaluate the internal and external factors affecting external strength of the 3-layer polymer composite pipes made of polymer mortar and fiber-glass reinforced plastic. Twenty four sandwich type 3-layer polymer composite pipes were made of polymer mortar and fiber-glass reinforced plastic by centrifugal method. The objective of this study was to evaluate the effects the of polymer mortar thickness for and core fiber-glass contents per unit area on external strength of 3-layer polymer composite pipes. For the more economical and practical design of 3-layer polymer composite pipe, further study should be done for the various polymer mortar, fiber-glass and different ratio of the inside/outside FRP thickness.

  • PDF

Strain Monitoring of Strengthened RC Beams with Hybrid Fiber Reinforced Polymer(FRP) Laminates by FBG Sensor

  • 홍건호;신영수;최은규
    • 콘크리트학회논문집
    • /
    • 제18권2호
    • /
    • pp.293-298
    • /
    • 2006
  • The reinforced concrete(RC) structures strengthened with fiber reinforced plastic(FRP) has been accepted by the construction engineering community for rehabilitation. FRP composites can present many advantages like a corrosion resistance, strength-weight ratio, relatively short application time, and cost effectiveness. The beams under design load, however, are cracked and result in degrading the strength. It is difficult to recognize cracks and deflections on the surface of the concrete members retrofitted with FRP through the life cycle. For these reasons, if they result in the effects, which were below the expected strength, we must monitor the state of concrete structures all the time in order to take an appropriate measure. Fiber Bragg Grating(FBG) sensor excel as monitoring of investigating the stress state of the retrofitted beams with FRP. The main objective of this study is to measure strain by experiment and analyze the behavior of RC beams retrofitted with FRP using FBG sensor. The kinds of FRP which were used in research are carbon, glass and improved hybrid FRP(IFRP) that has capacity than any other FRP. Other variables are the length of FRP, the number of sheet.