• 제목/요약/키워드: fiber orientation and distribution

검색결과 85건 처리시간 0.028초

Design of Thick Laminated Composite Plates for Maximum Thermal Buckling Load (최대 열적 좌굴하중을 갖는 두꺼운 복합재료 적층판의 설계)

  • Lee, Young-Shin;Lee, Yeol-Wha;Yang, Myung-Seog;Park, Bock-Sun
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • 제17권7호
    • /
    • pp.1761-1771
    • /
    • 1993
  • In this paper, the design of thick laminated composite plate subjected to thermal buckling load under uniform temperature distribution is presented. In the design procedures of composite laminated plates for maximum thermal buckling load. the finite element method based on shear deformed theory is used for the analysis or laminated plates. One-demensional search method is used to find optimal fiber orientation and, in the next step, optimal thickness is investigated. Design variables such as fiber orientation and ply thicknesses coefficient of plates are adopted. The optimal design for the symmetric or antisymmetric laminated plates consisted of 4 layers with maximum thermal buckling load is performed.

High Temperature Deformation Behavior of Ti-Al Intermetallic Compound and Orientation Distribution of Lamellae Structure (Ti-Al금속간화합물의고온변형거동및라멜라조직의결정방위분포)

  • Park Kyu-Seop;Kang Chang-Yong;Lee Keun-Jin;Chung Han-Shik;Jung Young-Guan;Fukutomi Hiroshi
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제21권10호
    • /
    • pp.162-169
    • /
    • 2004
  • High temperature uniaxial compression tests in the alpha single phase region were carried out on the Ti -43mo1%Al intermetallic compound, in order to obtain oriented lamellar microstructure. The compression deformation temperatures and strain rates are from 1573k to 1623k and 1.0x10$^{-4}$ s to 5.0x10$^{-3}$ s, respectively. Fully lamellar microstructure was observed after the uniaxial compression deformation in a single phase region followed by cooling to room temperature. Lamellar colony diameter depended on strain rates and test temperatures. The diameter varied between 8601m and 300fm. Stress-strain curve showed a work softening and the size of lamellar colony diameter varied depending on peak stresses. This shows the occurrence of dynamic recrystallization. Texture measurements after the uniaxial compression deformation, showed the development of fiber during dynamic recrystallization. It is seen that the area for the maximum pole density existed in 35 degrees away from the compression plane. The texture sharpens with a decrease in strain rate

Improved Closure Approximation for Numerical Simulation of Fiber Orientation in Fiber-Reinforced Composite (단섬유 보강 복합재료에서의 섬유배향의 수치모사를 위한 개선된 근사모델)

  • D.H. Chung;T.H. Kwon
    • The Korean Journal of Rheology
    • /
    • 제10권4호
    • /
    • pp.202-216
    • /
    • 1998
  • Improved version of previous 'Orthotropic' closure approximation, termed 'ORW' has been numerically developed using new homogeneous flow data. Previous 'Orthotropic' closure approximation, i.e., ORF or ORL showed non-physical oscillation for interaction coefficient $C_1$<0.001 at simple shear flow. It also shows non-physcial oscillation and under-prediction compared with 'Distribution Function Calculation' at non-homogeneous flow of center-gated disk. These phenomena are mainly due to the flow data of 'Distribution Function Calculation' which were used for least-square optimization. ORW obtained by fitting flow data of low interaction coefficient does not show non-physical oscillation and results in reasonably good behaviors at non-homogeneous flows as well as homogeneous flows. Fitting function forms have not been found to improve overall behaviors. It has been found that considering all the eigenvalues of orientation tensor (including the third eigenvalues) might end up with a better closure approximation than just considering the first and second eigenvalues. It is, however, very important and yet difficult to select appropriate function forms of eigenvalues. Numerical simulation including coupling and in-plane velocity gradient effects were performed for injection mold filing process with a film-gated strip and a center-gated disk using ORW and various other closure approximations for comparisons. Although ORW is in excellent agreement with 'Distribution Function Calculation', the predicted results seem to have consistent error in comparison with experimental data. The diffusivity term with constant interaction coefficient might have to be further investigated in order to accurately describe orientation states.

  • PDF

Using XFEM technique to predict the damage of unidirectional CFRP composite notched under tensile load

  • Benzaama, A.;Mokhtari, M.;Benzaama, H.;Gouasmi, S.;Tamine, T.
    • Advances in aircraft and spacecraft science
    • /
    • 제5권1호
    • /
    • pp.129-139
    • /
    • 2018
  • The composite materials are widely used in aircraft structures. Their relative rigidity/weight gives them an important advantage over the metal structures. The objective of this work is to analyze by the finite element method the mechanical behavior of composite plate type notched with various forms under tensile load. Two basic parameters were taken into consideration. The first, the form of the notch in order to see its effect on the stress and the failure load. The second, we studied the influence of the locale orientation of fiber around the plate's notch. These parameters are studied in order to see their effects on the distribution stress and failure load of the plate. The calculation of the failure load is determined numerically with the numerical code ABAQUS using the XFEM (extended Finite Element Modeling) based on the fracture mechanics. The result shows clearly that it is important to optimize the effect of fiber orientation around the notch.

Dyeing Study on DMF-Modified Polyesters for Morphology Characterization

  • Park, Myung-Ja
    • The International Journal of Costume Culture
    • /
    • 제5권2호
    • /
    • pp.53-65
    • /
    • 2002
  • Morphology of polyester fiber was physically modified by solvent treatment. PET fiber was treated with N,N-dimethylformamide (DMF) at 100, 120, $140^{circ}C$ for 10 minutes without tension. The structural changes in the morphology of DMF-induced modified PET fiber were FTIR and SEM analysis. Also dyeing behavior of DMF-treated polyester fibers with various disperse dyes was studied to detect changes of amorphous area in fine structure. DMF treatment resulted in increases in total void content, degree of crystallinity, trans isomer content, chain folding, segmental mobility and molecular packing, but it resulted in decreases in amorphous orientation, intermolecular forces and individual void size through longitudinal shrinkage, lateral welling and removal of oligomers. Void-size distribution could be estimated from the dye uptake with various sizes of disperse dyes. In contrast to the large increases in dye uptake with small dye molecules, there is no and little dye uptake with the bulkiest dye, which means that void size is bigger or smaller than the volume of each dye. Diffusion rates of dye molecules showed increases. This dyeing study revealed that the disperse dyeing is very effective method for characterizing the internal morphology of polyester fiber.

  • PDF

Impact of composite patch on the J-integral in adhesive layer for repaired aluminum plate

  • Kaci, D. Ait;Madani, K.;Mokhtari, M.;Feaugas, X.;Touzain, S.
    • Advances in aircraft and spacecraft science
    • /
    • 제4권6호
    • /
    • pp.679-699
    • /
    • 2017
  • The aim of this study is to perform a finite element analysis of the Von Mises stresses distribution in the adhesive layer and of the J-Integral for a damaged plate repaired by a composite patch. Firstly, we study the effect of the fiber orientation, especially the position of the layers that have orientation angle different of $0^{\circ}$ from the first layer which is in all cases of our study oriented at ($0^{\circ}$) on the J-Integral. Secondly, we evaluate the effects of the mechanical properties of the patch and the use of a hybrid patch on the reduction of stresses distribution and J-Integral. The results show clearly that the stacking sequence for the composite patch must be selected to absorb optimally the stresses from the damaged area and to position the various layers of the composite under the first layer whose fibers orientation will remain in all cases equal to $0^{\circ}$. The use of a hybrid composite reduces significantly the J-Integral and the stresses in both damaged plate and the adhesive layer.

Tensile Deformation Characteristics of ECC Predicted with a Modified Fiber Bridging Curve (수정된 섬유 가교 특성을 고려한 ECC의 인장변형특성)

  • Kim, Jeong-Su;Lee, Bang-Yeon;Kim, Jin-Keun;Kim, Yun-Yong
    • Journal of the Korea Concrete Institute
    • /
    • 제21권5호
    • /
    • pp.541-548
    • /
    • 2009
  • A theoretical prediction model of fiber bridging curve was established based on the assumption that fibers are uniformly distributed on the crack surface. However, the distance between fibers and their orientation with respect to crack surface can greatly affect the prediction of fiber bridging curve. Since, the shape of fiber bridging curve is a critical factor for predicting the tensile stress-strain relationship of ECC, it is expected that the assumption of uniform distribution of fiber may cause a significant error when predicting the tensile behavior of ECC. To overcome this shortcoming, a new prediction method of stress-strain relation of ECC is proposed based on the modified fiber bridging curve. Only effective fibers are taken into account considering the effects of their orientation and distance between them. Moreover, the approach for formulating the tensile stress-strain relation is discussed, where a procedure is presented for obtaining important parameters, such as the first crack strength, the peak stress, the displacement at peak stress, tensile strain capacity, and the crack spacing. Subsequent uniaxial tensile tests were performed to validate the proposed method. It was found that the predicted stress-strain relations obtained based on the proposed modified fiber bridging curve exhibited a good agreement with experimental results.

Multi-scale Process-structural Analysis Considering the Stochastic Distribution of Material Properties in the Microstructure (미소 구조 물성의 확률적 분포를 고려한 하이브리드 성형 공정 연계 멀티스케일 구조 해석)

  • Jang, Kyung Suk;Kim, Tae Ri;Kim, Jeong Hwan;Yun, Gun Jin
    • Composites Research
    • /
    • 제35권3호
    • /
    • pp.188-195
    • /
    • 2022
  • This paper proposes a multiscale process-structural analysis methodology and applies to a battery housing part made of the short fiber-reinforced and fabric-reinforced composite layers. In particular, uncertainties of the material properties within the microscale representative volume element (RVE) were considered. The random spatial distribution of matrix properties in the microscale RVE was realized by the Karhunen-Loeve Expansion (KLE) method. Then, effective properties of the RVE reflecting on spatially varying matrix properties were obtained by the computational homogenization and mapped to a macroscale FE (finite element) model. Morever, through the hybrid process simulation, a FE (finite element) model mapping residual stress and fiber orientation from compression molding simulation is combined with one mapping fiber orientation from the draping process simulation. The proposed method is expected to rigorously evaluate the design requirements of the battery housing part and composite materials having various material configurations.

Numerical Investigation of the Density and Inlet Velocity Effects on Fiber Orientation Inside Fresh SFRSCC (SFRSCC의 섬유 방향성에 미치는 입구 속도와 점성의 영향성에 대한 수치해석)

  • Azad, Ali;Lee, Jong-Jae;Lee, Jong-Han;Lee, Gun-Jun;An, Yun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • 제22권3호
    • /
    • pp.16-20
    • /
    • 2018
  • Steel Fiber reinforced self-compacting concrete (SFRSCC) has been widely used in a number of structures, such as ordinary civil infrastructures, sky scrapers, nuclear power plants, hospitals, dams, channels and etc. Thanks to its short and discrete reinforcing fibers, its performance, including tensile strength, ductility, toughness and flexural strength gets much better in comparison with ordinary self-compacting concrete (SCC) without any reinforcing fibers. Despite all these aforementioned advantages of SFRSCC, its performance highly depends on fiber's orientation. In case of short discrete fibers, the orientation of fibers is completely random and cannot be controlled during pumping process. If fibers distribution inside hardened state concrete are randomly distributed, it leads to less resistance potential of concrete element, especially in terms of flexural and tensile strength. The maximum expected strength may not be achieved. Therefore, fiber alignment has been considered as one of the important factors in SFRSCC. To address this issue, this study investigates the effects of concrete matrix's density and inlet velocity on fiber alignment during the pumping process using a finite element method.

A Study on the Fracture Characteristics of CFRP by Acoustic Emission (2) (음향방출법에 의한 탄소섬유강화 플라스틱의 파괴특성에 관한 연구 (2))

  • 윤종희;이장규;박성완;우창기;김봉각;조진호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 한국공작기계학회 2004년도 춘계학술대회 논문집
    • /
    • pp.58-63
    • /
    • 2004
  • This study is to investigate a fracture characteristics of carbon fiber reinforced plastics (CFRP) under the tensile loading as a function of acoustic emission (AE) according to the frequency analysis (transient mode) and AE source location (location mode). It was found that the fracture mechanism of AE frequency analysis was a useful tool for the estimation of different type of fracture in CFRP, i.e., matrix(epoxy resin) cracking, delamitation and fiber breakage same as AE amplitude distribution.

  • PDF