• Title/Summary/Keyword: fiber model

Search Result 1,655, Processing Time 0.026 seconds

A Study on the Composite Strengthening Effect in Metal Matrix Composites (단섬유 금속복합체에서의 복합강화효과에 관한연구)

  • 김홍건
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.03a
    • /
    • pp.61-66
    • /
    • 1996
  • An overall feature to simulate composite behavior and to predict closed solution has been performed for the application to the stress analysis in a discontinuous composite solid. To obtain the internal field quantities of composite, the micromechanics analysis and finite element analysis (FEA) were implemented. For the numerical illustration, an aligned axisymmetric single fiber model has been employed to assess field quantities. Further, a micromechanics model to describe the elastic behavior of fiber or whisker reinforced metal matrix composites has been developed and the stress concentrations between reinforcements were investigated using the modified shear lag model with the comparions between reinforcements were investigated using the modified shear lag model with the comparison of finite element analysis (FEA). The rationale is based on the replacement of the matrix between fiber ends with the fictitious fiber to maintain the compatibility of displacement and traction. It was found that the new model gives a good agreement with FEA results in the small fiber aspect ratio regime as well as that in the large fiber aspect ratio regime. It was found that the proposed simulation methodology for stress analysis is applicable to the complicated inhomogeneous solid for the investigation of micromechanical behavior.

  • PDF

A study on the development of photoelastic model material with shape memory effect (형상기억효과를 가진 투과형 광탄성 실험용 모델재료 개발에 관한 연구)

  • Lee, Hyo-Jae;Hwang, Jae-Seok;Shimamoto, Akira
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.3
    • /
    • pp.624-634
    • /
    • 1998
  • The photoelastic model material with shape memory effect and the molding processes for the material are developed in this research. The matrix and fiber of the photoelastic model material developed in this research are epoxy resin (Araldite to hardner 10 to 3 (weight ratio)) and wire of $Ti_50-Ni_50$ shape memory alloy, respectively. It is called Ti50-Ni50 Shape Memory Alloy Fiber Epoxy Composite $(Ti_50-Ni_50SMA-FEC).$ Ti50-Ni50 SMA-FEC is satisfied with the requirements of the photoelastic model material and can be used as a photoelastic model material. The maximum recovering strain of $Ti_50-Ni_50$SMA-FEC is occurred at $80^{\circ}C$ in any prestrain of $Ti_50-Ni_50$ shape memory alloy fiber and in any fiber volume ratio. Recovering strain(force) is increased with the increment of the prestrain and the fiber volume ratio. The best prestrain of $Ti_50-Ni_50$SMA-FEC is 5% for the recovering force among 1%, 3%, 5%.

Material Model for Compressive and Tensile Behaviors of High Performance Hybrid Fiber Reinforced Concrete (고성능 하이브리드 섬유보강 콘크리트의 압축 및 인장 거동에 대한 재료모델)

  • Kwon, Soon-Oh;Bae, Su-Ho;Lee, Hyun-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.311-321
    • /
    • 2021
  • Many studies have been performed on hybrid fiber reinforced concrete for years, which is to improve some of the weak material properties of concrete. Studies on characteristics of hybrid fiber reinforced concrete using amorphous steel fiber and organic fiber, however, yet remain to be done. The purpose of this research is to evaluate the compressive and tensile behaviors and then propose a material model of high performance hybrid fiber reinforced concrete using amorphous steel fiber and polyamide fiber. For this purpose, the high performance hybrid fiber reinforced concretes were made according to their total volume fraction of 1.0% for target compressive strength of 40MPa and 60MPa, respectively, and then the compressive and tensile behaviors of those were evaluated. Also, based on the experimental results of the high performance hybrid fiber reinforced concrete and mortar, each material model for the compressive and tensile behavior was suggested. It was found that the experimental results and the proposed models corresponded relatively well.

Modeling of Transmitting Light Irradiance Distribution of Step-index Multimode Optical Fiber (스텝 인덱스 멀티모드 광섬유의 투광 조도분포 모델링)

  • Shin, Woo-Cheol;Hong, Jun-Hee
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.2
    • /
    • pp.136-142
    • /
    • 2006
  • This paper presents irradiance distribution model of light radiated from a step-index multimode optical fiber. The model is important in analysis of displacement response characteristics for intensity modulation type optical fiber sensors. The induced model was verified by experimental results. And the displacement response analysis result induced by using the irradiance distribution model was verified by experimental results and compared with using existing irradiance distribution models such as the constant model or the gaussian model. The experiment has better agreement with the analysis result using the induced model in this study than with the others models.

Analysis of Temperature Dependence of Thermally Induced Transient Effect in Interferometric Fiber-optic Gyroscopes

  • Choi, Woo-Seok
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.237-243
    • /
    • 2011
  • Thermal characteristics, such as diffusivity and temperature induced change in the fiber mode index of rotation sensing fiber coil are critical factors which determine the time varying, thermo-optically induced bias drift of interferometric fiber-optic gyroscopes (IFOGs). In this study, temperature dependence of the transient effect is analyzed in terms of the thermal characteristics of the fiber coil at three different temperatures. By applying an analytic model to the measured bias in the experiments, comprehensive thermal factors of the fiber coil could be extracted effectively. The validity of the model was confirmed by the fact that the extracted values are reasonable results in comparison with well known properties of the materials of the fiber coil. Temperature induced changes in the critical factors were confirmed to be essential in compensating the transient effect over a wide temperature range.

Characteristics of Soils Reinforced by FPF(Fibrillated Polypropylene Fiber) (FPF(Fibrillated Polypropylene Fiber)보강 성토재료의 강도 특성에 관한 연구)

  • 김낙경;박종식
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.433-440
    • /
    • 2001
  • This study was to analyze characteristics of soils reinforced by FPF(Fibrillated Polypropylene Fiber). Laboratory test, model test and field tests were performed on soils reinforced by fibers, to evaluate the shear strength characteristics. For the silty sand, clayey sand and silty clay, the influence of fiber shape, fiber length and fiber content were evaluated from compaction test, direct shear test, uniaxial test, california bearing ratio(CBR) test. Fibrillated type fiber, 5cm long with a content of 0.5% shows 5∼30% increase of friction angle and 7∼55 percent increase of CBR value.

  • PDF

Characterization of Surface Quality in Orthogonal Cutting of Glass Fiber Reinforced Plastics

  • Choi Gi Heung
    • International Journal of Safety
    • /
    • v.3 no.1
    • /
    • pp.1-5
    • /
    • 2004
  • This study discusses frequency analysis based on autoregressive (AR) time series model, and the characterization of surface quality in orthogonal cutting of a fiber-matrix composite materials. A sparsely distributed idealized composite material, namely a glass reinforced polyester (GFRP) was used as workpiece. Analysis method employs a force sensor and the signals from the sensor are processed using AR time series model. The experimental correlations between the fiber pull-out and AR model coefficients are then established.

Compression failure and fiber-kinking modeling of laminated composites

  • Ataabadi, A. Kabiri;Ziaei-Rad, S.;Hosseini-Toudeshky, H.
    • Steel and Composite Structures
    • /
    • v.12 no.1
    • /
    • pp.53-72
    • /
    • 2012
  • In this study, the physically-based failure models for matrix and fibers in compression and tension loading are introduced. For the 3D stress based fiber kinking model a modification is proposed for calculation of the fiber misalignment angle. All of these models are implemented into the finite element code by using the advantage of damage variable and the numerical results are discussed. To investigate the matrix failure model, purely in-plane transverse compression experiments are carried out on the specimens made by Glass/Epoxy to obtain the fracture surface angle and then a comparison is made with the calculated numerical results. Furthermore, shear failure of $({\pm}45)_s$ model is investigated and the obtained numerical results are discussed and compared with available experimental results. Some experiments are also carried out on the woven laminated composites to investigate the fracture pattern in the matrix failure mode and shown that the presented matrix failure model can be used for the woven composites. Finally, the obtained numerical results for stress based fiber kinking model and improved ones (strain based model) are discussed and compared with each other and with the available results. The results show that these models can predict the kink band angle approximately.

Stress-strain behavior and toughness of high-performance steel fiber reinforced concrete in compression

  • Ramadoss, P.;Nagamani, K.
    • Computers and Concrete
    • /
    • v.11 no.2
    • /
    • pp.149-167
    • /
    • 2013
  • The complete stress-strain behavior of steel fiber reinforced concrete in compression is needed for the analysis and design of structures. An experimental investigation was carried out to generate the complete stress-strain curve of high-performance steel fiber reinforced concrete (HPSFRC) with a strength range of 52-80 MPa. The variation in concrete strength was achieved by varying the water-to-cementitious materials ratio of 0.40-0.25 and steel fiber content (Vf = 0.5, 1.0 and 1.5% with l/d = 80 and 55) in terms of fiber reinforcing parameter, at 10% silica fume replacement. The effects of these parameters on the shape of stress-strain curves are presented. Based on the test data, a simple model is proposed to generate the complete stress-strain relationship for HPSFRC. The proposed model has been found to give good correlation with the stress-strain curves generated experimentally. Inclusion of fibers into HPC improved the ductility considerably. Equations to quantify the effect of fibers on compressive strength, strain at peak stress and toughness of concrete in terms of fiber reinforcing index are also proposed, which predicted the test data quite accurately. Compressive strength prediction model was validated with the strength data of earlier researchers with an absolute variation of 2.1%.

Stress Analysis of a Discontinuous Composite Using Mechanics of Materials Approach (불연속 복합체의 재료역학적 접근을 통한 응력해석)

  • 김홍건;양성모;노홍길
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.4
    • /
    • pp.63-69
    • /
    • 2003
  • In discontinuous composite mechanics, shear lag theory is one of the most popular model because of its simplicity and accuracy. However, it does not provide sufficiently accurate strengthening predictions in elastic regime then the fiber aspect ratio is small. This is due to its neglect of stress transfer across the fiber ends and the stress concentrations that exist in the matrix regions near the fiber ends. To overcome this shortcoming, a more simplified shear lag model introducing the stress concentration factor which is a function of several variables, such as the modulus ratio, the fiber volume fraction, the fiber aspect ratio, is proposed. It is found that the modulus ratio($E_f$/$E_m$) is the essential variable among them. Thus, the stress concentration factor is expressed as a function of modulus ratio in the derivation. It is found that the proposed model gives a good agreement with finite element results and has the capability to correctly predict the values of interfacial shear stresses and local stress variations in the small fiber aspect ratio regime.