• Title/Summary/Keyword: fiber model

Search Result 1,655, Processing Time 0.024 seconds

Modeling the polypropylene fiber effect on compressive strength of self-compacting concrete

  • Nazarpour, Mehdi;Asl, Ali Foroughi
    • Computers and Concrete
    • /
    • v.17 no.3
    • /
    • pp.323-336
    • /
    • 2016
  • Although the self-compacting concrete (SCC) offers several practical and economic benefits and quality improvement in concrete constructions, in comparison with conventionally vibrated concretes confronts with autogenously chemical and drying shrinkage which causes the formation of different cracks and creates different problems in concrete structures. Using different fibers in the mix design and implementation of fibrous concrete, the problem can be solved by connecting cracks and micro cracks together and postponing the propagation of them. In this study an experimental investigation using response surface methodology (RSM) based on full factorial design has been undertaken in order to model and evaluate the polypropylene fiber effect on the fibrous self-compacting concrete and curing time, fiber percentage and fiber amount have been considered as input variables. Compressive strength has been measured and calculated as the output response to achieve a mathematical relationship between input variables. To evaluate the proposed model analysis of variance at a confidence level of 95% has been applied and finally optimum compressive strength predicted. After analyzing the data, it was found that the presented mathematical model is in very good agreement with experimental results. The overall results of the experiments confirm the validity of the proposed model and this model can be used to predict the compressive strength of fibrous self-compacting concrete.

Time-dependent and inelastic behaviors of fiber- and particle hybrid composites

  • Kim, Jeong-Sik;Muliana, Anastasia
    • Structural Engineering and Mechanics
    • /
    • v.34 no.4
    • /
    • pp.525-539
    • /
    • 2010
  • Polymer matrix composites are widely used in many engineering applications as they can be customized to meet a desired performance while not only maintaining low cost but also reducing weight. Polymers can experience viscoelastic-viscoplastic response when subjected to external loadings. Various reinforcements and fillers are added to polymers which bring out more complexity in analyzing the timedependent response. This study formulates an integrated micromechanical model and finite element (FE) analysis for predicting effective viscoelastic-viscoplastic response of polymer based hybrid composites. The studied hybrid system consists of unidirectional short-fiber reinforcements and a matrix system which is composed of solid spherical particle fillers dispersed in a homogeneous polymer constituent. The goal is to predict effective performance of hybrid systems having different compositions and properties of the fiber, particle, and matrix constituents. A combined Schapery's viscoelastic integral model and Valanis's endochronic viscoplastic model is used for the polymer constituent. The particle and fiber constituents are assumed linear elastic. A previously developed micromechanical model of particle reinforced composite is first used to obtain effective mechanical properties of the matrix systems. The effective properties of the matrix are then integrated to a unit-cell model of short-fiber reinforced composites, which is generated using the FE. The effective properties of the matrix are implemented using a user material subroutine in the FE framework. Limited experimental data and analytical solutions available in the literatures are used for comparisons.

Tensile Behavior of Fiber/Particle Hybrid Metal Matrix Composites (섬유/입자 혼합금속복합재료의 인장거동)

  • 정성욱;정창규;한경섭
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.139-142
    • /
    • 2002
  • This study presents a mathematical model predicting the stress-strain behavior of fiber reinforced (FMMCs) and fiber/particle reinforced metal matrix composites (F/P MMCs). MMCs were fabricated by squeeze casting method using Al2O3 short fiber and particle as reinforcement, and A356 aluminum alloy as matrix. The fiber/particle ratios of F/P MMCs were 2:1, 1:1, 1:2 with the total reinforcement volume fraction of 20 vol.%, and the FMMCs were reinforced with 10 vol,%, 15 vol. %, 20 vol. % of fibers. Tensile tests were conducted and compared with predictions which were derived using laminate analogy theory and multi-failure model of reinforcements. Results show that the tensile strength of FMMCs with 10 vol.% of fiber was well matched with prediction, and as the fiber volume increases, predictions become larger than experimental results. The difference between the prediction and experiment is considered to be a result of matrix allowance of fiber damage in tensile loading. As the fiber volume fraction in FMMCs increases, the fiber damage increases and so that the tensile strength is reduced. The strength of F/P MMCs approaches more closely to the prediction than FMMCs reinforced with 20 vol.% of fibers because F/P MMCs contains small quantity of fibers and thus has a positive effect in fiber strengthening.

  • PDF

FPF(Fibrillated Polypropylene Fiber) Reinforcement Method for Slope Repair (사면보수보강을 위한 FPF 보강공법개발)

  • 김낙경;박동원
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.257-264
    • /
    • 2001
  • This study presents the slope stability analysis results for the model slope test. The model slope was made of the soil reinforced by FPF(Fibrillated Polyprophylene Fiber). The shear strength properties of the soil reinforced by FPF fibers were evaluated through the direct shear tests. The model slope 1:1 and 1:1.5 were made and the load tests were performed. Back analysis using limit equilibrium method was carried out to evaluate the shear strength increase on the FPF reinforced slope. The factor of safety of the FPF reinforce slope increased about 23% over unreinforced slope.

  • PDF

Effects of Elastic Modulus Ratio on Internal Stresses in Short Fiber Composites (단섬유 복합체에서 탄성계수비가 내부응력에 미치는 영향)

  • 김홍건;노홍길
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.4
    • /
    • pp.73-78
    • /
    • 2004
  • The conventional SLT(Shear Lag Theory) which has been proven that it can not provide sufficiently accurate strengthening predictions in elastic regime when the fiber aspect ratio is small. This paper is an extented work to improve it by modifying the load transfer mechanism called NSLT(New Shear Lag Theory), which takes into account the stress transfer across the fiber ends and the SCF(Stress Concentration Factor) that exists in the matrix regions near the fiber ends. The key point of the model development is to determine the major controlling factor among the material and geometrical coefficients. It is found that the most affecting factor is the fiber/matrix elastic modulus ratio. It is also found that the proposed model gives a good result that has the capability to correctly predict the elastic properties such as interfacial shear stresses and local stress variations in the small fiber aspect ratio regime.

Design Model of Intensity Modulation Type Displacement sensor Using Step-index Multimode Optical Fiber (스텝 인덱스 멀티모드 광섬유를 이용한 광강도 변조방식 변위센서 설계모델 연구)

  • Shin, Woo-Cheol;Hong, Jun-Hee
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.6
    • /
    • pp.500-506
    • /
    • 2006
  • An optical fiber displacement sensor has the advantages of relatively simplicity, cheap, small probe size and immunity against environmental perturbation. The working principle of the sensor is based on the intensity modulation that is detection light intensity reflecting from the surface being measured. This paper presents the mathematical model of displacement measurement mechanism of this sensor type. The theoretical and experimental data are compared to verify the model in describing the realistic approach to sensor design. Finally, the analysis results show that displacement response characteristics such as sensitivity, measuring range are easily modified by principal design parameters such as magnitude of optical Power, diameter of optical fiber core and distance between transmitting fiber and receiving fiber.

Numerical Evaluation of Phase Velocity and Attenuation of Ultrasonic Waves in Fiber-Reinforced Composites Using the Mass-Spring-Dashpot Lattice Model

  • Baek, Eun-Sol;Yim, Hyun-June
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.6
    • /
    • pp.483-495
    • /
    • 2008
  • The paper presents a numerical study to evaluate the phase velocities and attenuations of the average longitudinal and shear ultrasonic waves resulting from multiple scattering in fiber-reinforced composites. A computational procedure developed in this work is first used to produce a random, yet largely even distribution of fibers. Both the viscoelastic epoxy matrix and lossless randomly distributed graphite fibers are modeled using the mass-spring-dashpot lattice model, with no damping for the latter. By numerically simulating ultrasonic through-transmission tests using this direct model of composites, phase velocities and attenuations of the longitudinal and shear waves through the composite are found as functions of frequency or fiber concentration. The numerical results are observed to generally agree with the corresponding results in the literature. Discrepancies found in some detail aspects, particularly in the attenuation results, are also addressed.

Finite Element Analysis of Concrete Columns Strengthened with Glass Fiber Sheets (유리섬유쉬트로 보강된 콘크리트 기둥의 유한요소해석)

  • 정택원;송하원;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.449-454
    • /
    • 2002
  • For finite analysis of concrete columns strengthened with glass fiber sheets, an effective concrete model which considers the confining effects by lateral reinforcement and glass fiber sheets is necessary. In this paper, the so-called elasto-plasticity and continuum fracture model (EPF model) is modified to consider high confining effects of strengthened reinforced concrete columns by introducing a simple correction factor ($\alpha$) which relates maximum lateral confining stress of the column to the evolution of deviatoric plasticity. Then, a finite element analysis is carried out for the strengthened reinforced concrete columns using the modified EPF model and equally spaced truss elements. It is shown that the, analysis predicts well the failure behavior of reinforced concrete columns strengthened with glass fiber sheets.

  • PDF

Meso scale model for fiber-reinforced-concrete: Microplane based approach

  • Smolcic, Zeljko;Ozbolt, Josko
    • Computers and Concrete
    • /
    • v.19 no.4
    • /
    • pp.375-385
    • /
    • 2017
  • In the present paper experimental and numerical analysis of hook-ended steel fiber reinforced concrete is carried out. The experimental tests are performed on notched beams loaded in 3-point bending using fiber volume fractions up to 1.5%. The numerical analysis of fiber reinforced concrete beams is performed at meso scale. The concrete is discretized with 3D solid finite elements and microplane model is used as a constitutive law. The fibers are modelled by randomly generated 1D truss finite elements, which are connected with concrete matrix by discrete bond-slip relationship. It is demonstrated that the presented approach, which is based on the modelling of concrete matrix using microplane model, able to realistically replicate experimental results. In all investigated cases failure is due to the pull-out of fibers. It is shown that with increase of volume content of fibers the effective bond strength and slip capacity of fibers decreases.

A Theoretical Study on Quantitative Prediction and Evaluation of Thermal Residual Stresses in Metal Matrix Composite (Case 1 : Two-Dimensional In-Plane Fiber Distribution) (금속기지 복합재료의 제조 및 성형시에 발생하는 열적잔류응력의 정량적 평가 및 예측에 관한 이론적 연구 (제 1보 : 강화재가 2차원 평면상태로 분포하는 경우))

  • Lee, Joon-Hyun;Son, Bong-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.17 no.2
    • /
    • pp.89-99
    • /
    • 1997
  • Although discontinuously reinforced metal matrix composite(MMC) is one of the most promising materials for applications of aerospace, automotive industries, the thermal residual stresses developed in the MMC due to the mismatch in coefficients of thermal expansion between the matrix and the fiber under a temperature change has been pointed out as one of the serious problem in practical applications. There are very limited nondestructive techniques to measure the residual stress of composite materials. However, many difficulties have been reported in their applications. Therefore it is important to establish analytical model to evaluate the thermal residual stress of MMC for practical engineering application. In this study, an elastic model is developed to predict the average thermal residual stresses in the matrix and fiber of a misoriented short fiber composite. The thermal residual stresses are induced by the mismatch in the coefficient of the thermal expansion of the matrix and fiber when the composite is subjected to a uniform temperature change. The model considers two-dimensional in-plane fiber misorientation. The analytical formulation of the model is based on Eshelby's equivalent inclusion method and is unique in that it is able to account for interactions among fibers. This model is more general than past models to investigate the effect of parameters which might influence thermal residual stress in composites. The present model is to investigate the effects of fiber volume fraction, distribution type, distribution cut-off angle, and aspect ratio on thermal residual stress for in-plane fiber misorientation. Fiber volume fraction, aspect ratio, and distribution cut-off angle are shown to have more significant effects on the magnitude of the thermal residual stresses than fiber distribution type for in-plane misorientation.

  • PDF