• Title/Summary/Keyword: fiber grating

Search Result 546, Processing Time 0.025 seconds

The Measurement of Concrete Deformations at Early Age using Fiber-Optic Bragg Grating Sensors (광섬유 GRATING SENSOR를 이용한 초기재령 콘크리트의 변형 측정)

  • 김지상;이상배;김남식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1238-1241
    • /
    • 2000
  • The deformations of concrete specimens were measured at early at early ages, in order to verify the applicability of FBG(Fiber Bragg Grating) sensors. The FBG sensors were directly buried at various locations in the beam-type RC specimens at the time of fabrication. In this experiment, the changes of strains in concrete at early age were successfully measured as the movement in wavelength of light signals. The FBG sensors may be a very effective tool to investigate the mechanical/thermal behavior inside of concrete structures.

  • PDF

Fabrication and Analysis of Chirped Fiber Bragg Gratings by Thermal Diffusion

  • Cho, Seung-Hyun;Park, Jae-Dong;Kim, Byoung-Whi;Kang, Min-Ho
    • ETRI Journal
    • /
    • v.26 no.4
    • /
    • pp.371-374
    • /
    • 2004
  • We propose and demonstrate a fabrication method of chirped fiber gratings by a thermal diffusion process. The method could suggest a direction for a simple and cost-effective implementation of chirped fiber grating-based devices.

  • PDF

Remote Measurement of a Distant Temperature and Current using Fiber Bragg Grating Sensors and Erbium-doped Fiber Ring Laser (어븀 첨가 광섬유형 링 레이저와 광섬유 격자 기반 센서를 이용한 원거리의 온도 및 전류 측정)

  • Sohn, Kyung-Rak;Shim, June-Hwan;Yang, Gyu-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.8
    • /
    • pp.1257-1262
    • /
    • 2008
  • A long-distance remote sensing of temperature and current based on a fiber Bragg grating (FBG) is proposed and demonstrated. The thermal expanding effect of the epoxy and the Er-doped fiber ring laser (EFRL) are applied to the sensor system to enhance the temperature and current sensitivity. An EFRL with a 5 km-single-mode fiber and a FBG shows a high extinction ratio of more than 60 dB and a low power fluctuation of less than 1 dB. The metal wires are used to supply the current to the sensors. When the NOA65 puts on the FBG as a thermal expanding material, the temperature and current sensitivity of the lasing wavelength shift are about $30\;pm/^{\circ}C$ and 3pm/mA, respectively. The proposed sensing scheme is useful for measurement of current or temperature at a distant object of more than several km.

Construction and Characterization of Travelling Wave Type Single Mode Fiber Laser Using a Fiber Grating (광섬유격자를 이용하는 진행파형 단일모드 광섬유레이저의 제작과 특성 측성)

  • 김택중;박희갑;이동한
    • Korean Journal of Optics and Photonics
    • /
    • v.6 no.4
    • /
    • pp.296-301
    • /
    • 1995
  • A single-mode erbium-doped fiber laser is constructed by using a intracore fiber Bragg grating and a unidirectional fiber loop mirror. The laser cavity is designed in such a way that the laser beam forms a travelling wave in the gain medium by placing the erbium-doped fiber inside the unidirectional loop and that the wavelength-selective feedback is made from the outside of the loop by a fiber grating with 0.2 nm reflection linewidth. An additional fiber ring resonator is constructed and used as an optical spectrum analyzer to observe the variation of the laser mode spectra. As the result, relatively stable single mode, single polarization output is observed for the most of the time except some mode hoppings in minute scale due to enviommental temperature variations. tions.

  • PDF

Design of Optical Filters using Grating-Assisted Fiber Couplers (GAFCs)

  • Ho Kwang-Chun
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.276-280
    • /
    • 2004
  • This paper first takes advantage of a rigorous modal transmission-line theory (MTLT) to analyze the filtering properties of optical waves guiding by grating-assisted fiber couplers (GAFCs). The numerical results reveal that MTLT serves as a suitable and powerful approach to evaluate systematically the dispersion properties and the characteristics of optical power transfer in GAFCs.

  • PDF

Optical Acetylene Gas Detection using a Photonic Bandgap Fiber and Fiber Bragg Grating (광섬유 격자와 포토닉 밴드갭 광섬유를 이용한 아세틸렌가스 검출)

  • Lee, Yun-Kyu;Lee, Kyung-Shik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.7
    • /
    • pp.23-29
    • /
    • 2010
  • We propose an optical gas sensor, which consists of a hollow core photonic bandgap fiber (HC-PBGF) and fiber Bragg grating (FBG), for the detection of acetylene gas. The gas detection scheme is uniquely characterized by modulating the Bragg wavelength of the fiber Bragg grating around a selected absorption line of gas filled in the photonic bandgap fiber. In the measurement, a 2m-long HC-PBGF and FBG with a Bragg wavelength of 1539.02nm were used. The FBG was modulated at 2Hz. We demonstrated that the optical fiber gas sensor was able to selectively measure the 2.5% and 5% of acetylene gases.

Spectrum analysis of the FBG sensor signal and location determination of FBG sensor into the $H_2$ pressure vessel (해석적인 기법을 통한 FBG 센서의 스펙트럼 분석 및 수소고압용기의 센서 삽입위치 결정)

  • Park, S.O.;Kim, C.U.;Park, J.S.;Kim, C.G.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.25-28
    • /
    • 2005
  • The optical fiber is known for the proper sensor which can accomplish the structural health monitoring, Fiber Bragg Grating sensors are being studied more than any other fiber optic sensors due to good multiplexing capabilities. But because the signal stability of FBG sensors can be influenced by the strain gradient, it needs to analyze signal of FBG sensors. Particularly acoording to strain gradient induced by structural geometry or cracks, the spectrum peak of the FBG sensor signal can be split easily. In this paper, the spectrum analysis of the FBG sensor signal was performed and the region of embedment of FBG sensors was determined in $H_2$ pressure vessel by numerical method.

  • PDF

A PDMS-Coated Optical Fiber Bragg Grating Sensor for Enhancing Temperature Sensitivity

  • Park, Chang-Sub;Joo, Kyung-Il;Kang, Shin-Won;Kim, Hak-Rin
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.329-334
    • /
    • 2011
  • We proposed a poly-dimethylsiloxane (PDMS)-coated fiber Bragg grating (FBG) temperature sensor for enhancing temperature sensitivity. By embedding the bare FBG in a temperature-sensitive elastomeric polymer, the temperature sensitivity of the proposed structure could be effectively improved by 4.2 times higher than those of the conventional bare-type FBG sensors due to the high thermal expansion coefficient of the PDMS. We analyzed the temperature-sensitivity enhancement effect with the increased Bragg wavelength shift in our structure and dependence on the temperature sensitivity with respect to the cross-section area of the PDMS.

Passive Temperature Compensation Package for Optical Long Period Fiber Gratings

  • Lee, Sang-Mae;Gu, Xijia
    • Journal of the Optical Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.74-79
    • /
    • 1999
  • We present a simple design rule for a passive temperature-compensating optical package. We also present experimentally that a package fabricated by using the design rule compensates the temperature dependence of the resonant wavelength of an optical long period fiber grating by varying the strain inside the fiber, The package fabricated in this work consists of two pieced of brass tube, 10 mm long, and a piece of nylon rod, 45.4 mm long. It is shown that the package can compensate the temperature-induce wavelength shifts of the long period grating to a range of 6.8 pm/$^{\circ}C$, compared with 0..48 nm/$^{\circ}C$ for an uncompensated grating. The reduced strength of the fiber caused by exposure to ultraviolet limits the performance of the package to the range operating temperature form -3 $^{\circ}C$ to 7$0^{\circ}C$.

Performance Evaluation of A Tunable Dispersion Compensator based on Strain-Chirped Fiber Bragg Grating in a 40 Gb/s Transmission Link

  • Kim, Chul-Han;Bae, Jun-Key;Lee, Kwan-Il;Lee, Sang-Bae
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.244-248
    • /
    • 2008
  • We have evaluated the performance of strain-chirped fiber Bragg grating (FBG) based tunable dispersion compensator in a 40 Gb/s transmission link. In our proposed compensator, the value of dispersion could be changed from -353 ps/nm to -962 ps/nm by adjusting the rotation angle of the metal beam on which the FBG was mounted. In order to evaluate the effect of ripples in reflectivity and variations in passband of the FBG based dispersion compensator, transmission performance has been measured with our tunable dispersion compensator. Error-free transmission of a 40 Gb/s non-return-to-zero (NRZ) signal over conventional single-mode fiber (SMF) was achieved.