• Title/Summary/Keyword: fiber elements

Search Result 427, Processing Time 0.026 seconds

Investigation on Nd:YAG Laser Weldability of Zircaloy-4 End Cap Closure for Nuclear Fuel Elements

  • Kim, Soo-Sung;Lee, Chul-Yung;Yang, Myung-Seung
    • Nuclear Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.175-183
    • /
    • 2001
  • Various welding processes are now available for end cap closure of nuclear fuel element such as TG(Tungsten Inert Gas) welding, magnetic resistance welding and laser welding. Even though the resistance and TIG welding processes are widely used for manufacturing commercial fuel elements, they can not be recommended for the remote seal welding of a fuel element at a hot cell facility due to the complexity of electrode alignment, difficulity in the replacement of parts in the remote manner and a large heat input for a thin sheath. Therefore, the Nd:YAG laser system using optical fiber transmission was selected for Zircaloy-4 end cap welding inside hot cell. The laser welding apparatus was developed using a pulsed Nd:YAG laser of 500 watt average power with optical fiber transmission. The weldability of laser welding was satisfactory with respect to the microstructures and mechanical properties comparing with TIG and resistance welding. The optimum operation processes of laser welding and the optical fiber transmission system for hot cell operation in a remote manner have been developed The effects of irradiation on the properties of the laser apparatus were also being studied.

  • PDF

Earthquake resistance of structural walls confined by conventional tie hoops and steel fiber reinforced concrete

  • Eom, Taesung;Kang, Sumin;Kim, Okkyue
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.843-859
    • /
    • 2014
  • In the present study, the seismic performance of structural walls with boundary elements confined by conventional tie hoops and steel fiber concrete (SFC) was investigated. Cyclic lateral loading tests on four wall specimens under constant axial load were performed. The primary test parameters considered were the spacing of boundary element transverse reinforcement and the use of steel fiber concrete. Test results showed that the wall specimen with boundary elements complying with ACI 318-11 21.9.6 failed at a high drift ratio of 4.5% due to concrete crushing and re-bar buckling. For the specimens where SFC was selectively used in the plastic hinge region, the spalling and crushing of concrete were substantially alleviated. However, sliding shear failure occurred at the interface of SFC and plain concrete at a moderate drift ratio of 3.0% as tensile plastic strains of longitudinal bars were accumulated during cyclic loading. The behaviors of wall specimens were examined through nonlinear section analysis adopting the stress-strain relationships of confined concrete and SFC.

Nonlinear analysis and tests of steel-fiber concrete beams in torsion

  • Karayannis, Chris G.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.4
    • /
    • pp.323-338
    • /
    • 2000
  • An analytical approach for the prediction of the behaviour of steel-fiber reinforced concrete beams subjected to torsion is described. The analysis method employs a special stress-strain model with a non-linear post cracking branch for the material behaviour in tension. Predictions of this model for the behaviour of steel-fiber concrete in direct tension are also presented and compared with results from tests conducted for this reason. Further in this work, the validation of the proposed torsional analysis by providing comparisons between experimental curves and analytical predictions, is attempted. For this purpose a series of 10 steel-fiber concrete beams with various cross-sections and steel-fiber volume fractions tested in pure torsion, are reported here. Furthermore, experimental information compiled from works around the world are also used in an attempt to establish the validity of the described approach based on test results of a broad range of studies. From these comparisons it is demonstrated that the proposed analysis describes well the behaviour of steel-fiber concrete in pure torsion even in the case of elements with non-rectangular cross-sections.

X-band Microwave Photonic Filter Using Switch-based Fiber-Optic Delay Lines

  • Jung, Byung-Min
    • Current Optics and Photonics
    • /
    • v.2 no.1
    • /
    • pp.34-38
    • /
    • 2018
  • An X-band microwave photonic (MWP) filter using switch-based fiber-optic delay lines has been proposed and experimentally demonstrated. It is composed of two electro-optic modulators (EOMs) and $2{\times}2$ optical MEMS-switch-based fiber-optic delay lines. By changing time-delay difference and coefficients of each wavelength signal by using fiber-optic delay lines and an electro-optic modulator, respectively, a bandpass filter or a notch filter can be implemented. For an X-band MWP filter with four channel elements, fiber-optic delay lines with the unit time-delay of 50 ps have been experimentally realized and the frequency responses corresponding to the time-delays has been measured. The measured frequency response error at center frequency and the time-delay difference error were 180 MHz at 10 GHz and 3.2 ps, respectively, when the fiber-optic delay line has the time-delay difference of 50 ps.

Dynamic Behavior of Steel Fiber Reinforced Concrete (강섬유콘크리트의 동적거동)

  • 강보순;심형섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.379-384
    • /
    • 2003
  • In this paper, dynamic behavior of steel fiber reinforced concrete(SFRC) by experimental method is discussed. Because of its improved ability to dissipate energy, impact resistance and fatigue behavior, SFRC has a better dynamic behavior than that of plain concrete. Dynamic behavior is influenced by longitudinal reinforcement ratio, volume and type of steel fiber, strength of concrete and the stress level. Impact resistance and damping in the SFRC has been evaluated from dynamic experimental test data at various levels of cracked states in the elements

  • PDF

Nonlinear analysis of contemporary and historic masonry vaulted elements externally strengthened by FRP

  • Hamdy, Gehan A.;Kamal, Osama A.;El-Hariri, Mohamed O.R.;El-Salakawy, Tarik S.
    • Structural Engineering and Mechanics
    • /
    • v.65 no.5
    • /
    • pp.611-619
    • /
    • 2018
  • This paper addresses numerical modeling and nonlinear analysis of unreinforced masonry walls and vaults externally strengthened using fiber reinforced polymers (FRP). The aim of the research is to provide a simple method for design of strengthening interventions for masonry arched structures while considering the nonlinear behavior. Several brick masonry walls and vaults externally strengthened by FRP which have been previously tested experimentally are modeled using finite elements. Numerical modeling and nonlinear analysis are performed using commercial software. Description of the modeling, material characterization and solution parameters are given. The obtained numerical results demonstrate that externally applied FRP strengthening increased the ultimate capacity of the walls and vaults and improved their failure mode. The numerical results are in good agreement with the experimentally obtained ultimate failure load, maximum displacement and crack pattern; which demonstrates the capability of the proposed modeling scheme to simulate efficiently the actual behavior of FRP-strengthened masonry elements. Application is made on a historic masonry dome and the numerical analysis managed to explain its structural behavior before and after strengthening. The modeling approach may thus be regarded a practical and valid tool for design of strengthening interventions for contemporary or historic unreinforced masonry elements using externally bonded FRP.

A Study on the Plane Stress Problem of Composite Laminated Annular Elements Using Finite Difference Method (유한차분법을 이용한 복합적층 원형곡선요소의 평면응력문제 연구)

  • Lee, Sang Youl;Yhim, Sung Soon;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.1 s.30
    • /
    • pp.65-79
    • /
    • 1997
  • Composite materials are consist of two or more different materials to produce desirable properties for structural strength. Because of their superiority in strength, corrosion resistance, and weight reduction, they are used extensively as structural members. The objective of this study is to present the effectivness of the laminated composite elements by analyzing in-plane displacement and stress of the anisotropic laminated annular elements. Anisotropic laminated structures are very difficult to analyze and apply, compared with isotropic and orthotropic cases for arbitrary boundaries and fiber angle -ply. Boundary conditions for the examples used in this study consist of two opposite edges clamped and the other two edges free, and finite difference method is used in this study for numerical analysis. From the numerical result, it is found that the program used in this study can be used to obtain the displacement of the straight beams considering it's transverse shear deformation as well as anisotropic laminated elements. Several numerical examples show the advantages of the stiffness increase when the angle-ply composite materials are used. Therefore it gives a guide in deciding how to make use of fiber's angle for the subtended angle, load cases, and boundary conditions.

  • PDF

Simulation of Cracking Behavior Induced by Drying Shrinkage in Fiber Reinforced Concrete Using Irregular Lattice Model (무작위 격자 모델을 이용한 파이버 보강 콘크리트의 건조수축 균열 거동 해석)

  • Kim, Kunhwi;Park, Jong Min;Bolander, John E.;Lim, Yun Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4A
    • /
    • pp.353-359
    • /
    • 2010
  • Cementitious matrix based composites are vulnerable to the drying shrinkage crack during the curing process. In this study, the drying shrinkage induced fracture behavior of the fiber reinforced concrete is simulated and the effects of the fiber reinforcement conditions on the fracture characteristics are analysed. The numerical model is composed of conduit elements and rigid-body-spring elements on the identical irregular lattice topology, where the drying shrinkage is presented by the coupling of nonmechanical-mechanical behaviors handled by those respective element types. Semi-discrete fiber elements are applied within the rigid-body-spring network to model the fiber reinforcement. The shrinkage parameters are calibrated through the KS F 2424 free drying shrinkage test simulation and comparison of the time-shrinkage strain curves. Next, the KS F 2595 restrained drying shrinkage test is simulated for various fiber volume fractions and the numerical model is verified by comparison of the crack initiating time with the previous experimental results. In addition, the drying shrinkage cracking phenomenon is analysed with change in the length and the surface shape of the fibers, the measurement of the maximum crack width in the numerical experiment indicates the judgement of the crack controlling effect.

Nonlinear Analytical Model of Unreinforced Masonry Wall using Fiber and Shear Spring Elements (파이버 및 전단 스프링요소를 이용한 비보강 조적벽체의 비선형 해석모델)

  • Hong, Jeong-Mo;Shin, Dong-Hyeon;Kim, Hyung-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.283-291
    • /
    • 2018
  • This study intends to develop an analytical model of unreinforced masonry(URM) walls for the nonlinear static analysis which has been generally used to evaluate the seismic performance of a building employing URM walls as seismic force-resisting members. The developed model consists of fiber elements used to capture the flexural behavior of an URM wall and a shear spring element implemented to predict its shear response. This paper first explains the configuration of the proposed model and describes how to determine the modeling parameters of fiber and shear spring elements based on the stress-strain curves obtained from existing experimental results of masonry prisms. The proposed model is then verified throughout the comparison of its nonlinear static analysis results with the experimental results of URM walls carried out by other researchers. The proposed model well captures the maximum strength, the initial stiffness, and their resulting load - displacement curves of the URM walls with reasonable resolution. Also, it is demonstrated that the analysis model is capable of predicting the failure modes of the URM walls.

Precise Drilling characteristics of glass fiber epoxy composite material (유리섬유 에폭시 복합재료의 정밀드릴가공 특성)

  • 김홍배
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.4
    • /
    • pp.117-122
    • /
    • 1998
  • Glass fiber epoxy composite material is widely used in the structures of aircrafts, robots and other machines because of their high specific strength, high specific stiffness and high damping. In order for the composite materials to be used in the aircraft structures or machine elements, accurate surfaces for bearing mounting or joint must be provided, which require precise machining. In this paper, the machinability of the glass fiber epoxy composite material was experimentally investigated. The results can be summarized as follows : 1. The entrance of hole is very good manufacturing existing, but exit come to occur sever surface exfoliation. 2. The cutting force in drilling of the glass fiber epoxy composite material is decreased as the drilling speed increased. 3. If the glass fiber epoxy composite material is drilling by the standard twist drill, then the hole recommand cutting condition is spindle speed 400∼600rpm, feed 40∼50mm/min.

  • PDF